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ABSTRACT 

 

 

Eleni Galiatsatou 

   March 2012 

Survival Analysis is a branch of statistics that examines the time until 

death of biological organisms and also failures of mechanical systems. 

Survival Analysis is trying to answer questions such as: Which is the part of a 

population that will survive after a specified time? Of those who will survive, 

in what rate will they die or fail? Can the multiple causes of death or failure 

be taken under consideration? How can the special circumstances or the 

characteristics raise or drop the probability of survival? For someone to 

answer these kinds of questions the definition of “lifetime” is necessary. In the 

occasion of biological survival, death is accurate, but in mechanic 

trustworthiness, failure may not be defied with total accuracy. Even in 

biological problems, some facts (such as heart attacks or other organ failure) 

can have the same inaccuracy.  

The reason of this thesis is to present the fields of everyday life on which 

the analysis of survival data is applied. The thesis is divided into three parts. 

The first part deals with a historical background of survival analysis, the 

terminology that is needed to describe the method, while the third part 

presents some sections of science on which survival analysis is applied. 

Specifically, theory and applications on Economy, Social Work, Demography 

and Health are presented. The last part of this report deals with the 

conclusions that came up during this project.   
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ΠΕΡΙΛΗΨΗ 

 

Ελένη Γαλιατσάτου 

     Μάρτιος 2012 

Η Ανάλυση Επιβίωσης είναι ένας κλάδος της Στατιστικής που εξετάζει τον χρόνο 

που µεσολαβεί µέχρι τον θάνατο στους βιολογικούς οργανισµούς και την εµπλοκή 

ενός µηχανήµατος στη µηχανολογία. Η ανάλυση επιβίωσης προσπαθεί να απαντήσει 

σε ερωτήσεις όπως: ποιο είναι το µέρος ενός πληθυσµού που θα επιζήσει µετά από 

έναν ορισµένο χρόνο; Από εκείνους που επιζούν, µε τι ρυθµό θα “πεθάνουν” ή θα 

αποτύχουν; Μπορούν οι πολλαπλάσιες αιτίες θανάτου ή η αποτυχία να ληφθούν 

υπόψη; Πώς οι ιδιαίτερες περιστάσεις ή τα χαρακτηριστικά αυξάνουν ή µειώνουν τις 

πιθανότητες της επιβίωσης; Για να απαντήσει κανείς σε τέτοιες ερωτήσεις, είναι 

απαραίτητο να καθοριστεί «η διάρκεια ζωής». Στην περίπτωση της βιολογικής 

επιβίωσης, ο θάνατος είναι σαφής, αλλά για τη µηχανική αξιοπιστία, η αποτυχία 

µπορεί να µην είναι καθορισµένη µε σαφήνεια. Ακόµη και στα βιολογικά 

προβλήµατα, µερικά γεγονότα (παραδείγµατος χάριν, καρδιακή προσβολή ή άλλη 

αποτυχία οργάνων) µπορούν να έχουν την ίδια ασάφεια.   

Ο σκοπός της παρούσας διατριβής είναι να παρουσιάσει τοµείς της 

καθηµερινότητας στους οποίους εφαρµόζεται η ανάλυση των δεδοµένων επιβίωσης. 

Η διατριβή αποτελείται από 3 µέρη. Στο πρώτο µέρος παρουσιάζεται µια σύντοµη 

ιστορική αναδροµή στην ανάλυση επιβίωσης, την ορολογία που απαιτείται για την 

περιγραφή της µεθόδου, ενώ το δεύτερο παρουσιάζει µερικούς τοµείς της επιστήµης  

στους οποίους εφαρµόζεται η Ανάλυση Επιβίωσης. Συγκεκριµένα, παρουσιάζεται η 

θεωρία και οι εφαρµογές της στην Οικονοµία, την Κοινωνική Εργασία, την 

∆ηµογραφία και την Υγεία. Το τελευταίο µέρος της παρούσας διατριβής περιέχει 

συµπεράσµατα που προέκυψαν κατά την εκπόνηση της εργασίας. 
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CHAPTER 1 

 

 

Introduction 

 

 

In many fields of the natural, medical, and social sciences, there has been much 

interest in the analysis of data representing the time to occurrence of certain events. 

Data that measure lifetime or the length of time until the occurrence of an event are 

called lifetime, failure time or survival data. For instance, variables of interest for 

engineers might be the lifetime of a specific machine component. Medical scientists 

are concerned with hospitalizations, visits to a physician, and death or relapse of 

patients in a clinical trial. In the study of work and careers, attention is given to the 

length of time a person stayed on a job, job changes, promotions, unemployment or 

duration of a strike. Criminologists study crimes and arrests while demographers 

focus on births, deaths, marriages, divorces and migration. 

The history of ‘survival analysis’ begun at 1662 when the book ‘Natural and 

Political Observations upon the bill of Mortality’ was published by John Graunt, an 

English statistician, generally considered to be the founder of the science of 

demography, the statistical study of human populations. A prosperous haberdasher 

until his business was destroyed in the London fire of 1666, Graunt held municipal 

offices and a militia command. While still active as a merchant, he began to study the 

death records that had been kept by the London parishes since 1532. In his book 

Graunt classified death rates according to the causes of death among which he 

included overpopulation, the people’s age, the time of the event and the gender: he 

observed that the urban death rate exceeded the rural. He also found that although the 

male birth rate was higher than the female, it was compensate by a greater mortality 

rate for males, so that the population was divided almost evenly between the sexes. 

His most important innovation was the life table, which presented mortality in terms 

of survivorship. Using only two rates of survivorship (to ages 6 and 76), derived from 

actual observations, he predicted the percentage of persons that will live to each 

successive age and their life expectancy year by year. Many years later, between 1687 
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and 1691 Edmund Halley created the First Life Table which has a lot of similarities 

with the Life Tables we use nowadays in demography and event history analysis. 

After a sixty year long evolving procedure the level of nowadays’ knowledge of 

survival analysis is well developed. During World War II, survival analysis was used 

to study failure of military equipment and predicting the probability of response 

whereas during the last 30 years it’s use pertains to clinical trials and the development 

of a disease. The most remarkable is that we consider the survival time not only as the 

“time to death” but also time until the occurrence of a failure. (Dimaki, 2007) 

The purpose of this research is to present various applications of survival analysis, 

except for the most common field which is clinical trials, used in medicine,  
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CHAPTER 2 

 
 

Functions of Survival Time 

 

 

2.1 Introduction 

 

In this chapter, we present the statistical method for analyzing survival data. We 

define survival time as a random variable that corresponds to the time from the 

beginning of the follow-up period of an individual until the failure. In the past, the 

study of survival data has focused on predicting the probability of response, survival 

or mean lifetime while in recent years, the identification of risk and prognostic factors 

related to response, survival, and the development of a disease has become equally 

important. Nowadays, the survival analysis is suitable for applications in industrial 

reliability, demography, social science, business and marketing. Examples of survival 

data in these fields are the lifetime of firms in a market environment, lifetime of 

electronic devices (reliability engineering), duration of first marriage (sociology), 

felon’s time to parole (criminology), duration of strikes or periods of unemployment 

in economics.  

 

 2.2 Censoring 

 

Many researchers consider survival data analysis to be merely the application of 

two conventional statistical methods to a special type of problem: a) Parametric if the 

distribution of the survival time is known to be normal and b) Nonparametric in the 

case of unknown distribution. This assumption could be true if the survival times of 

all the subjects were exact and known. However, some survival times are not. Further, 

the survival distribution is often skewed or far from being normal. Thus, there is a 

need for new statistical techniques. One of the most important developments is due to 

a special feature of survival data in the life sciences that occurs when some subjects in 

the study have not experienced the event of interest at the end of the study or time of 

analysis. For instance, some patients may still be alive or in remission at the end of the 

study period. The exact survival times of these subjects are unknown. These are called 

censored observations or censored times and can also occur when individuals are lost 
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to follow-up after a period of study. When these are not censored observations, the set 

of survival times is complete. There are three types of censoring: 

 

a. Type I Censoring 

Clinical trials usually start with a fixed number of subjects, to which the treatment 

is given. A familiar difficulty in the analysis of survival data is when we have some 

information about individual failure time but we do not know the real time to failure. 

Sometimes the subject does not experience the failure event before the end of the 

study or the subject is lost to follow-up during the study period, or the subject 

withdraws from the study because of some reason( e.g. time or cost limitations, death 

is not the event of interest, adverse drug reaction, etc.) (Lee 1992). First option is to 

observe for a fixed period of time, after which the animals that survived are sacrificed. 

This kind of censorship is called Type I. In this type of censoring, if there are no 

accidental losses, all censored observations equal the length of the study period. 

Survival times recorded for the subjects that died during the study period are the times 

from the start of the experiment to their death and are called uncensored observations. 

On the other hand, the survival times of the sacrificed subjects are not known but are 

recorded as at least the length of the study period. These times are called censored 

observations. 

For instance, consider leukemia patients followed until they go out of remission 

(survival time is the time in remission). In case of a patient’s death due to a heart 

disease, the patient’s failure time is considered censored. Knowing that, the survival 

time of this person is at least as long as the period that the person has been followed, 

but we cannot know in any case the full failure time. 

 

b. Type II Censoring 

Second option is to wait until a fixed portion of the subjects have failed. This is 

known as Type II censoring. If there are no accidental losses, the censored 

observations equal the largest uncensored observation. Type I and Type II are also 

called singly censored data. 

For instance, in an experiment of 100 animals, the study terminates when a portion, 

say 80 out of 100 dies, and the surviving animals are sacrificed. In this case, if there 
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are no accidental losses, the censored observations equal the twenty largest 

uncensored observations. 

 

c. Type III Censoring 

Last but not least, in many clinical studies the period of study is fixed and patients 

enter the study at different times during that period. For subjects that are lost to 

follow-up or do not fail until the end of the study, their survival times begin from their 

entrance until the last contact or the end of the study respectively. This third option is 

called Type III censoring or progressively censored data (Cohen, 1965). It is also 

called random censoring. 

For example, suppose that six patients with acute leukemia enter a clinical study 

during a total study period of one year. The remission times of the patients vary 

according to each organism and leukemia type. If a patient gets into remission in the 

beginning of the fifth month and he is still in remission at the end of the study, then 

the observed survival or censor time for the particular patient is seven months. 

All of the types of censoring are right censoring (or censoring to the right), left 

censoring, both left and right, and in some special cases, censored observations 

within the observation period (interval censoring)(Yamaguchi, 1991). For instance, 

right censored observations can occur in life course histories at the time of the 

retrospective interview or, both left and right censored observations could be found in 

a panel study of job mobility (Blossfeld and Rohwer, 1995). When there are no 

censored observations, the set of survival times is complete. 

 

2.3 Definitions 
 

Survival time is defined as a nonnegative random variable (let assume T), as is has 

already been mentioned at the beginning of this chapter, which is the time of failure of 

the entity known to exist at time t=0, and is therefore frequently called the failure time 

random variable and like any random variable forms a distribution. The distribution 

of survival time is described by three functions: 1. The Survivorship Function, 2. The 

Probability Function, 3. The Hazard Function. All these functions are mathematically 

equivalent; if one of them is given, the other two can be derived easily.  
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• Survivorship Function (or Survival Function) 

This function is defined as the probability that a subject survives longer than t or 

the probability that failure (death) will occur after time t, which is the same as the 

probability that the entity, known to exist at time t=0, will survive to at least time t. It 

is symbolized as S(t). That is to say: 

                     ( ) (a subject survives longer than t)= ( )S t P P T t= >                            (2.1) 

or 

   
t

0

( ) 1 ( ) 1 (a subject fails before time t)=1- ( ) 1 ( )S t P T t P f x dx F t= − ≤ = − = −∫      (2.2) 

where the f(t) is the failure density and the F(t) the failure cumulative probability. 

Moreover, S(t) is a non-increasing function of time t with two properties: 

                                                 
1 ,  for t=0

( )
0 ,  for t=

S t


= 
∞

 

That is, the probability of surviving at least at the time zero is 1 and that of surviving 

an infinite time is 0. If T is the time of failure of an entity which exists at t=0, then T 

is also the future lifetime of this entity measured from t=0. It is important to note that 

the age of the study unit, animate or inanimate, at time t=0, and hence its attained age 

at time of failure, is not of interest to us, and might not even be known. The reason for 

this is that we believe the chance of failure to be a function of time under the study 

conditions, and not of the attained chronological age of the study unit. For this reason 

we use the function S(t). This function is also called cumulative survival rate. In 1942, 

Berkson recommended a graphic presentation of S(t) which has been called survival 

curve up to our days. 

In practice, if there are no censored observations, the survival function is estimated 

as the proportion of patients surviving longer than t: 

                          
number of patients surviving longer than tˆ( )

total number of patients
S t =                          (2.3) 

where the circumflex denotes an estimate of the function. Thus, when censored 

observations are present is no longer appropriate for estimating S(t). We will discuss 

the estimation of S(t) for censored data with the use of nonparametric methods in 

chapter 4. 

  

• Probability Density Function (or Density Function) 
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For the special case of a continuous random variable, such as the survival time T, 

its probability density function is defined as the limit of the probability that an 

individual fails in the short interval t to t+h per unit width h, or the probability of 

failure in a small interval per unit time. Thus,  

                   

0

0 0

0 0

0

[an idividual dying in the interval (t,t+h)]
( ) lim ,  t 0

( ) ( ) ( )
       lim lim

( ) ( ) 1 ( ) 1 ( )
       lim lim

( ) ( )
       lim

h

h h

h h

h

P
f t

h

P t T t h P T t h P T t

h h

F t h F t S t h S t

h h

S t h S t
S

h

+

+ +

+ +

+

→

→ →

→ →

→

= ≥

≤ ≤ + ≤ + − ≤
= = =

/ /+ − − + − +
= = =

+ −
′= − = − ( )t

 

This function indicates the unconditional instantaneous probability of event 

occurrence or episodes ending at the exact time t. By this we mean that it is the 

density of failure at time t given only that the entity existed at t=0. The notion h 

represents a small time interval ∆t. As it becomes smaller and smaller, the density 

function f(t) reaches the limit on the right hand side of the equation we set out above. 

Whereas F(t) and S(t) are probabilities which relate to certain time intervals, f(t) 

relates to a point of time, and is not a probability, per se. It is an instantaneous 

measure, as opposed to an interval measure. The graph of f(t) is called the density 

curve. 

In the discrete case, it is just ( ) ( ) 1 ( )P T t F t S t≤ = = − . 

If there are no censored observations, the probability density function is estimated 

as the proportion of patients dying in an interval per unit width. 

 

• Hazard Function 

Distribution function F(t), survival function S(t) and density function f(t), are 

mathematical notions which are anticipated to express  a process going forward in 

time. Under a causal view of such a process, temporal aspects as the past, present and 

future, should be present on the description of the distribution of the duration variable 

T, with respect to the set of individuals whose behavior generates the process. A 

complemented description of the distribution of the variable T becomes available 

when the episode under study has ended for all the individuals. Consequently, to make 

a causal assessment of how the process evolves, we should use a concept that allows 
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describing the development of the process at every point in time, while the process is 

going on (Blossfeld and Rohwer, 1995). This concept is known as hazard rate h(t) of 

survival time T, or the Hazard Rate Function (HRF), or the age-specific failure rate, 

and gives the conditional density of failure at time t. It is defined as the probability of 

the subject to fail within the time t given that it had already survived until the time 

point t. Specifically,  

                

0

0

0

(an individual fails in the time interval (t,t+h)

                    |the individual has survived to t
( ) lim

( |
      lim

1 ( ) ( )
      lim

( )

h

h

h

P

h t
h

P t T t h T t

h

P t T t h f t

S t h

→

→

→

 
 
 =
 
 
 

≤ ≤ + > =   
< ≤ + = =   1 ( )F t−

 

In other words, the hazard rate function can be written in the continuous case, as: 

                                          
( )

( ) ,     where t 0
( )

f t
h t

S t
= ≥  

Whereas in the discrete case, 

                                         
( )

( ) ,   where t= 0, 1, 2, ...
( )

P T t
h t

P T t

=
=

≥
 

It is very important to have a clear understanding of the descriptive meanings of 

h(t) and f(t). They are both instantaneous measures of the density of failure at time t; 

they differ from each other in that h(t) is conditional on survival to time t, whereas f(t) 

is unconditional (i.e. given only existence at time t=0). The hazard rate function h(t) is 

anyhow, a specialized characteristic of the data. However, is very useful for the study 

of survival time and thus for the failure distribution, if we consider also that usually 

the information available is about the diachronic evolution of h(t). In this sense we 

can choose the functional expression of the hazard rate function for the specific 

system. For that reason, we end up with a differential equation, or an equation of 

differences, depending on the type of the random variable. In the actuarial context of 

human survival models, failure means death, or mortality, and the hazard rate is 

normally called the force of mortality. 
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In practice, when there are no censored observations the hazard function is 

estimated as the proportion of patients dying in an interval per unit time, given that 

they have survived to the beginning of the interval. 

 

The three above functions are mathematically equivalent. Given any one of them, 

the other two can be derived. In general, if a conditional measure is multiplied by the 

probability of obtaining the condition, then the corresponding unconditional measure 

will result. Thus,  

                                                ( ) ( ) ( )h t S t f t⋅ =  

Or 

                                                
( )

( )
( )

f t
h t

S t
=  

Some important mathematical consequences follow directly from the above 

equation. Since the probability density function is derivative of the cumulative 

distribution function,  

                                        [ ]( ) 1 ( ) ( )
d

f t S t S t
dt

′= − = −  

It follows that, 

                                        
( )

( ) ln ( )
( )

S t d
h t S t

S t dt

′
= − = −  

Integrating, we have 

                                            
0

( ) ln ( )
t

h x dx S t= −∫  

Or  

                                          
0

( ) exp ( )
t

S t h x dx
 

= − 
 
∫  

The Cumulative Hazard Function (CHF) is defined to be 

                                        
0

( ) ( ) ln ( )
t

H t h x dx S t= = −∫  

So that,  

                                             [ ]( ) exp ( )S t H t= −  
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Through a similar approach we can define the mathematical relationship between the 

hazard rate and the density function, which is given by 

                                       [ ]( ) ( ) exp ( )f t h t H t= ⋅ −  
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CHAPTER 3 

 

 

Specific Parametric Survival Distributions 

 

 
3.1 Introduction 
 

Usually, there are many physical causes that lead to the failure or death of a person 

at a particular time. It is very difficult, if not impossible to isolate these physical 

causes and account mathematically for all of them. Parametric approaches are used 

either when a suitable model or distribution is fitted to the data or when a distribution 

can be assumed for the population from which the sample is drawn. If a survival 

distribution is found to fit the data properly, the survival pattern can then be described 

by the parameters in a compact way. Statistical inference can be based on the 

distribution chosen. In this chapter we will present several theoretical distributions 

that have been used widely to describe survival time.  

 

3.2 Exponential Distribution, E(λ) 
 

    The exponential distribution is often referred to as a purely random failure pattern. 

It is famous for its unique “lack of memory”, which requires that the age of the 

individual does not affect future survival. This property of lack of fit allows the use of 

the exponential distribution for the description of the lifetime of a system when there 

is no actual loss in the system due to the passage of time. Nevertheless, in the 

framework of survival analysis this situation is unreal as it actual accepts that the 

working time does not result to damage in the survival time. There are cases although 

where this situation is found, like in reliability theory, when analysis focuses on the 

lifetime control with replacement. 

    When the survival time T follows the exponential distribution with a parameter λ,  

� The Probability Density Function is defined as 

                                              ( ) ,    t 0, 0tf t e λλ λ−= ≥ >  

� The Cumulative Distribution Function is 

                                              ( ) 1 ,   t 0tF t e λ−= − ≥  

� The Survival Function is  
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                                              ( ) ,    t 0tS t e λ−= ≥  

� The Hazard Function is 

                                              ( ) ,   t 0h t λ= ≥  

Because the exponential distribution is characterized by a constant hazard rate, 

independent of the age of the individual, there is no ageing or wearing out, and failure 

or death is a random event independent of time. This condition is necessary and 

capable to ensure that any non-negative random variable T is exponentially 

distributed. 

 

3.3 Weibull Distribution, Weibull(λ,p) 
 

    The Weibull Distribution is a generalization of the exponential distribution. It is 

characterized by two parameters, λ and p. The value of λ determines the shape of the 

distribution curve and the value of p determines its scaling. Consequently, λ and p are 

called the shape and scale parameters, respectively. 

� The probability density function is 

                                  1( ) exp ( ) ,  t 0, λ, p >0p p pf t p t tλ λ−  = − ≥   

� The Cumulative Distribution Function is 

                                  ( ) 1 exp ( ) ,  t 0, λ, p>0pF t tλ = − − ≥   

� The Survival Function is 

                                  ( ) exp ( ) ,  t 0, , p>0pS t tλ λ = − ≥   

� The Hazard Rate is 

                                  1( ) ( ) ,  t 0, λ, p>0ph t p tλ λ −= ≥  

    When λ=1, the hazard rate remains constant as time increases; this is the 

exponential case. When λ>1, the hazard rate increases, and when λ<1 it decreases as 

time t increases. 

 

3.4 Lognormal Distribution, Λ(µ, σ
2
)     

 

    One of the most commonly used distribution is the Normal Distribution. Since the 

Normal allows negative value, a plausible way of using it in Survival Analysis is to 

take logT normally distributed. So we assume a lognormal distribution for the failure 

times. 
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� The probability density function is defined 

                               2

2

1 1
( ) exp (log ) ,  t>0,  σ>2

22
f t t

t
µ

σσ π
 = − −  

 

� And the Survivorship Function: 

                          2

2

1 1 1
( ) exp (log )

22 t

S t x dx
x

µ
σσ π

∞
 = − −  ∫  

    The hazard function of the lognormal distribution cannot be written explicitly but 

only in terms of intervals. For small values of σ, the lognormal density looks very like 

a Normal one.  

 

3.5 Gamma Distribution, G(α) 

    The continuous random variable T follows the Gamma Distribution with 

parameters α, β >0 if 

� The survival function is 

                                        1( ) ,   t, y>0
( )

a
y a

t

S t e y dy
a

ββ∞
− −=

Γ∫  

� The probability density function is 

                                                1( )
( )

a
t af t e t

a

ββ − −=
Γ

 

     With 

1

0

,   0

       1           ,  1  
( )

1                  ,    
2

( 1) ( 1), 1

       ( 1)!   ,     

y te y dy t

t
t

t

t t t

n t n

π

∞
− −
⋅ >


 =

Γ = 
=

 − ⋅Γ − >
 − = ∈

∫

�

 

� The hazard rate is 

                                           
[ ]

1( ) exp( )
( )

( ) 1 ( )

a

a

t t
h t

a I t

β β β
β

− −
=

Γ −
 

    Where Iα(t) is the cumulative function of the standardized Gamma which is made 

by Gamma with parameters α and β =1. In this spot, the cumulative function of the 

standardized Gamma is given by 

                                1

0

1
( ) ( ) ( ) ,  t, y>0

( )

t

y aI t F t P T t e y dy
a

α
− −= = ≤ =

Γ∫  
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    When 0 < α < 1, there is negative ageing and the hazard rate decreases 

monotonically from infinity to β as time increases from 0 to infinity. When α>1 there 

is positive aging and the hazard rate increases monotonically from 0 to β as time 

increases from 0 to infinity. When α=1, the hazard rate equals β, a constant, as in the 

exponential case. So, varying a changes the shape of the distribution while varying b 

changes only the scaling. 

 

3.6 Compound Exponential or Pareto Distribution, Pareto (θ,α) 
 

    A continuous random variable T with survival function  

                                             ( ) ,  t , α, θ>0a aS t tθ θ−= ≥  

follows a Pareto Distribution or Compound Exponential Distribution with parameters 

α and θ. 

� The Cumulative Distribution Function is  

                                            ( ) 1 ,  t , , >0aF t tαθ θ α θ−= − ≥  

� The probability density function is 

                                            ( 1)( ) ,  t , , >0a af t tαθ θ α θ− += ≥  

� The hazard function is  

                                            ( ) ,   α>0
a

h t
t

=  

 

3.7 The Gompertz Distribution 
 

    The Gompertz Distribution is also characterized by two parameters λ and γ. Its 

� Hazard Function is 

                                            ( ) exp( )h t tλ γ= +  

    When γ>0, there is a positive aging starting from eλ . When γ<0, there is a negative    

aging and when γ=0, h(t) reduces to a constant, eλ . 

� The survivorship function is 

                                           ( )( ) exp 1te
S t e

λ
γ

γ
⋅ 

= − ⋅ − 
 

 

� The Probability density function is  
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                                          ( )1
( ) exp tf t t e eλ γ λλ γ

γ
+ 

= + ⋅ − − 
 

 

 

3.8 Geometric Distribution, G(p) 

 

    A discrete random variable T with  

� Survival Function 

                           1( ) ( ) ,   0,1, 2,...,  0 1,  1tS t P T t q t p q p+= > = = < < = −  

Is said to follow the geometric distribution with parameter p. The survival function is 

defined on the positive integers, while p∈(0,1).  

� The Probability Function is given by 

                         ( ) ( ) (1 ) ,  0,1,2,...,  0 1t t

Tf t P T t p q p p t p= = = ⋅ = ⋅ − = < <  

� The Hazard Rate is defined as 

                                                      ( )Th t p=  

 

3.9 Yule Distribution, Yule(p) 
 

    A discrete random variable T is said to follow the Yule distribution with parameter 

p if 

� The Survival Function is 

                                       
1

( ) ( ),    0,1, 2,...,  0
t

S t pr T t t p
p

+
= ⋅ = = >  

� The probability function is 

                                   
!

( )
( 1)( 2) ( 1)

pt
P T t

p p p t
= =

+ + ⋅⋅⋅ + +
 

� The Hazard manipulation is 

                                  

( ) ( )
( )

( ) ( ) ( )

( )
      

1 1
( ) ( )

pr T t pr T t
h t

pr T t pr T t pr T t

pr T t p

t p t
pr T t pr T t

p

= =
= = =

≥ > + =

=
= =

+ + += + =
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CHAPTER 4 

 

 

Nonparametric Approaches of Estimating 

              

                     
4.1 Introduction 
 

     Nonparametric methods are more efficient when no theoretical distribution fits the 

data sufficiently, or the search of an appropriate model is too time consuming or not 

economical. For all the above reasons, nonparametric approaches can be suitable to 

describe the characteristic features included in a substantive process that is under 

study. Since these methods do not make any assumptions about the distribution of the 

process, they could be remarkably useful as first explorations in the data analysis 

before attempting to fit a theoretical model to the data. For instance, this consideration 

is very helpful to biostatisticians whenever their experiments allow for few if any 

assumptions about the distribution of event occurrences. In this chapter we will 

describe two typical nonparametric methods: The Product-Limit or Kaplan-Meier and 

the Life table estimation method.  

     These nonparametric estimation methods provide very useful estimates of survival 

probabilities and graphical presentation of survival distribution as the transition rate or 

hazard rate (Blossfeld and Rohwer, 1995). Moreover, if the sample size is very large, 

for example in the thousands, or the interest is in a large population, it may be more 

convenient to perform a life table analysis. Although this method is one of the oldest 

techniques for measuring mortality and describing the survival experience of a 

population, many of the actuaries, demographers, governmental agencies, and medical 

researchers still tend to favor life table (Kostaki, 1997). 

    The PL estimates and life table estimates of the survivorship function are 

essentially the same. The only difference is that the PL estimate calculates risk sets at 

any point in time, but needs a large amount of calculations when large data sets are 

used while in the life table method survival times are grouped into discrete time 

intervals. However, with the increased availability of computers, PL method can be 

applicable to small, moderate, and large samples. 
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4.2 Product - Limit estimation 
 

    A non-parametric estimate of the survival function in the case of any right-censored 

sample, is the product-limit method developed by Kaplan and Meier (1958).  A basic 

characteristic of the product-limit estimator is that it does not require a distribution 

assumption, such as the uniform or exponential. We will present the process in the 

simple case of single mutation. 

     Firstly, we assume that we have n individuals under study which all are having the 

same origin state and k failures to occur. Moreover, all episodes of the sample either 

come to the same destination state, or they have been censored on the right. Also let 

m(i) be the number of failures at time ti with i=1,2,…,k and assume that t0=0, which 

means all episodes have been starting at the time point zero.  

    Hence, we regard these k points of time in ascending order such as 1 2 ... kt t t≤ ≤ ≤ , 

where at least one of the episodes closes when a failure occurs. Last but not least, we 

recall ri as the number of individuals in risk set at time ti. 

    We should notice that the censored episodes ending in the interval [ti-1, ti) are 

included in the risk set at the time point ti. A censored episode in [ti-1, ti) has no event 

up to time point ti, but its duration also includes the same ending time point. It shows 

that censoring comes about an infinitesimal length of time after the observed ending 

time point. 

    The product-limit estimator of the survivor function ( )S t
)

 is given by 

                                               
( )

: 

ˆ( ) 1
i

i

i

i t t i

m
S t

r<

 
= − 

 
∏  

While in case of uncensored observations the above estimation has the simple 

expression we have already mentioned in chapter 2 (equation 2.3) and is repeated 

below:  

                            
number of patients surviving longer than tˆ( )

total number of patients
S t =  

    If two or more ti are equal (tied observations), the largest i value is used. Since 

every individual is alive at the beginning of the study and no one survives longer than 

tk, then 

                                             0
ˆ( ) 1S t =    and ˆ( ) 0kS t =                                               (4.1)  
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    Moreover, there is the estimation of standard error of ˆ( )S t , based on the asymptotic 

theory at a fixed time t and is given by 

                                       

1

2

:

ˆ ˆ[ ( )] ( )
( )

i

i

i t t i i i

m
SE S t S t

r r m<

 
= ⋅  

− 
∑  

    An apparent PL estimate of the cumulated transition or transition rate is given by 

                                                 ˆˆ ( ) log[ ( )]H t S t= −                                                      

    The Cumulative transition rate ˆ ( )H t  is very effective for giving simple graphical 

checks on the assumption that the time, until the event occurrences, follows a 

particular distribution. On the other hand, the PL estimate method is unable to provide 

exact estimates of the transition rate. 

    As far as ˆ( )S t  is concerned, it is computed at every distinct survival time. We do 

not have to worry about the intervals between the distinct survival times in which no 

one dies and ˆ( )S t  remains constant. From the definition of ˆ( )S t  and its properties 

(4.1) we figure that ˆ( )S t  is a step function starting at 1 and decreasing in steps of 1/k 

(if there are no ties) reaches 0. Also, from the plot of ˆ( )S t  per t, we are able to read 

the various percentiles of survival time or calculate them from ˆ( )S t . 

    The Kaplan-Meier method provides very useful estimates of survival probabilities 

and graphical presentation of survival distribution. It is the most widely used method 

in survival data analysis. Breslow and Crowley (1974) and Meier (1975) have shown 

that under certain conditions, the estimate is consistent and asymptomatically normal. 

However, a few critical features should be mentioned: 

� The Kaplan-Meier estimates are limited to the time interval in which the 

observations fall. If the largest observation is uncensored, the PL estimate at that 

time is 0. If the largest observation is censored, the PL estimate can never equal 0 

and is undefined beyond the largest observation. 

� The most commonly used summary statistic in survival analysis is the median 

survival time. A simple estimation of the median can be read from survival curves 

estimated by PL method as the time t at which ˆ( )S t =0.5. However, this solution is 

not unique. If the survival curve is horizontal at ˆ( )S t =0.5, any t value in the 

interval [ti-1, ti) is a reasonable estimate of the median. A practical solution is to 
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take the midpoint of the interval as the PL estimate of the median. On the other 

hand there is the case of overestimating the median. A practical way to handle this 

problem is to connect the points and then locate the median. 

� If less than 50% of the observations are uncensored and the largest observation is 

censored, the median survival time cannot be estimated. A solution to this problem 

is to use probability of surviving a given length of time, or the mean survival time 

limited to a given time t. 

� The PL method assumes that censoring is independent of the survival times. In 

other words, the reason an observation is censored is unrelated to the cause of 

death. This assumption is true if the individual is still alive at the end of the study 

period. However, the assumption is violated if the patient develops severe adverse 

effects from the treatment and is forced to leave the study before failure or if the 

individual died of a cause other than the one under study. In case of inappropriate 

censoring, the PL method is inappropriate. One solution to this problem is to avoid 

it or reduce it to a minimum. 

� The Standard Error of the Kaplan-Meier estimator of S(t) gives an indication of the 

potential error of ˆ( )S t . We have to pay more attention to the 95% confidence 

interval for S(t) which is ˆ ˆ( ) 1.96 [ ( )]S t SE S t± ⋅ rather than the point estimate ˆ( )S t . 

 

4.3 The Life Table 
 

Another non-parametric method to estimate the survivor function, the density 

function and the transition rate for the time until an event occurs is the life table. It is 

one of the oldest techniques for measuring mortality and describing the survival 

experience of a population. Widely used in demographic and actuarial statistics, the 

life table method is the earliest, best known attempt for studying longitudinal event 

history data, in the form of single life table as well as in multiple decrement life table 

(Namboodiri and Suchindran, 1987; Kostaki, 1997). It has been used in studies of 

survival, population growth, fertility, migration, length of married life, length of 

working life, and so on. The life tables, summarizing the mortality experience of a 

specific population for a specific period of time, are called population life tables. The 

life tables applied to clinical and epidemiologic research are called clinical life tables. 
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In using this estimate method we have to take into account two restrictions. Firstly, 

we have to set up the durations into present time intervals. Because these time 

intervals are demarcated, the outcome of the process would be based on the ability of 

the researcher to define the length of the intervals. Secondly, we have to consider the 

set of episodes put into analysis, in order for the estimates be consistent, within each 

time interval. So, the life table method needs large data sets to provide good 

approximations of the survival function, the density function and the transition rate. 

Taking everything into consideration, the time axis has to be marked off by a 

number of split points, say t1, t2, …,tk such as 

                                             1 20 ... kt t t≤ < < <  

Given that 1kt + = ∞ , the observation period has been divided in k fixed time 

intervals. Each one of these intervals, denoted by Ii, includes only the left limit. The 

interval is from ti up to but not including ti+1. The last interval has an infinite length. 

Formally, 

                        { }1/i i iI t t t t += ≤ < , where i=1, 2, 3, …, k 

Afterwards, we show up the process of a single transition life table presented by the 

formulas used in the calculation of the survivor function, the density function and the 

transition rate. In the case of a single transition, each episode has only a single origin 

state and a single destination state. Moreover, to take the analysis straightforward, we 

should assume that all episodes comprising our sample have the same origin state. 

Firstly, we assume that li is the number of individuals who are lost to observation 

and whose survival status is unknown in the ith interval. Secondly, let wi be the 

number of individuals withdrawn alive in the ith interval and those are known to be 

alive at the closing date of the study. The survival time recorded for such individuals 

is the length of time from entrance to the closing date of the study. Also, let di be the 

number of individuals who die in the ith interval. The survival time of these 

individuals is the time from entrance to death.  

Likewise, for each time interval, we should define a risk set ni typifying the number 

of individuals who are exposed to risk in the ith interval. It is prospective that a 

number of episodes would be censored during each time interval. In order to calculate 

the risk set ni, we should set firstly the number of individuals entering the ith interval, 

let '

i
n . Considering that the number of individuals who enter the first interval '

1
n  is 
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the total sample size, this number is equal to the number of individuals studied at the 

beginning of the previous interval minus those who are lost to follow-up, are 

withdrawn alive, or have died in the previous interval, thus we have,  

                                            ' '

1 1 1 1i i i i in n l w d− − − −= − − −  

The next step is to determine the ni number as a result of the operation  

                                               ' 1
( )

2
i i i in n l w= − +  

It is assumed that the times to loss or withdrawal are approximately uniformly 

distributed in the interval. Therefore, individuals lost or withdrawn in the interval are 

exposed to risk of death for one-half of the interval. If there are no losses or 

withdrawals, '

i in n= . 

After the definition of the risk set ni, we should present two important conditional 

probabilities. First of all, we should define the conditional proportional dying qi 

which is the conditional probability for experiencing an event in the ith interval given 

exposure to the risk of death in the ith interval. Thus, 

                                        ,i
i

i

d
q

n
=  for i=1,…, k-1 

Secondly, we define the conditional proportion surviving pi as the conditional 

probability of surviving in the ith interval, given by 

                                                1i ip q= −  

Using the conditional probability for not having an event in the ith interval, or the 

survivor probability pi, we could obtain an estimator for the survivor function S(ti) at 

time ti. It is often referred to as the cumulative survival rate. For i=1, S(ti)=1 and for 

i=2, …, k estimates of the survivor function are given by 

                                            1 1( ) ( )i i iS t p S t− −= ⋅  

It is the usual life-table estimate and is based on the fact that surviving to the start of 

ith interval means surviving to the start of and then through the (i-1)th interval. 

Coming up with the estimates of the survivor function S(ti), we are able to define 

the estimated probability density function ( )mif t  at the midpoints tmi  of the first k-1 

intervals as the probability of dying in the ith interval per unit width. To summarize 

the above we have 
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                              1

1

( ) ( )
( ) i i

mi

i i

S t S t
f t

t t

+

+

−
=

−
, where i=1, 2, …, k-1 

In case of the last interval being open in the right side, it is impossible to estimate 

the survivor function S(tk) for this interval. The same impediment, which stands for 

the density function f(tmi), goes for the transition rate h(tmi). The hazard function for 

the ith interval estimated at the midpoint, is 

                    
1

1

2
( )

1 ( )(1 )
( ) ( )

2

i i
mi

i i i
i i i i

d q
h t

t t p
t t n d +
+

= =
− +− ⋅ −

 

It is the number of deaths per unit time in the interval divided by the average number 

of survivors at the midpoint of the interval. That is, h(tmi) is derived from 
( )

( )
mi

mi

f t

S t
 and 

since S(ti) is defined as the probability of surviving at the beginning, not the midpoint, 

of the ith interval, we have 

                                  1

1
2

( ) ( ) ( )
( )

( ) ( )( 1)
mi i i i i

mi

mi i i

f t S t q t t
h t

S t S t p

+ −
= =

+
 

Searcher (1956) derives an estimate of the hazard function by assuming that 

hazard is constant within an interval but varies among intervals. His estimate is 

                                       
1

( log )
( ) e i

mi

i i

p
h t

t t+

−
=

−
 

Finally, we need to derive the corresponding standard errors for each of the 

functions estimated above. Thereby, approximate standard errors for the estimate of 

survivor function S(ti) are given by 

                                  

1

21

1

[ ( )] ( )
i

j

i i

j j j

q
SE S t S t

p n

−

=

 
= ⋅  

  
∑   

Moreover, approximate standard errors for the estimate of density function f(ti) are 

derived from equation 

                          

1

21

11

( )
[ ( )]

i
i i i i

i

ji i j j j j

q S t q p
SE f t

t t p n q n

−

=+

 
= ⋅ + 

−   
∑  

While approximate standard errors for the estimate of transition rate are obtained 

by 



 
 

30 

 

                          

1
2 2

1( ) ( )( )
[ ( )] 1

2
mi mi i i

mi

i i

h t h t t t
SE h t

q n

+
 −  = −  ⋅    

 

Under the hypothesis of the treatment of large samples, we could assume that the 

estimates of the survivor, density and rate functions divided by their standard errors, 

can be approximately described by the standard normal distribution. In the case of 

large samples, it is likely to get confidence intervals for the values of above functions. 

 

Comparing the life table method which groups the episode durations into fixed 

time intervals with the product-limit estimation, we conclude that PL estimator has a 

major advantage. It can use all the information included in the set of episodes put into 

analysis, by calculating the set of individuals at risk at every point in time, considering 

that at least one event occurred at the same point in time. According to Blossfeld and 

Rohwer (1995), the only disadvantage of the method is the large amount of 

calculations involved because of the large data sets used. This occurs because the 

method requires the diversity of all episodes according to their ending times. If the 

episodes have more than one origin states, things become more complicated. Thanks 

to modern computers with a lot of access memory and computation speed, we 

simplify this disadvantage.  
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CHAPTER 5 

 

 

Comparing Survival Distributions with 

Non-Parametric Methods 

 

5.1 Introduction 
 

After the estimation of a Survival Function we wish to determine the acceptability 

of a fitted model as an adequate representation of the true underlying model. The 

problem of comparing survival distributions arises often in biomedical research. The 

investigator is interested in comparing the treatment’s abilities to prolong life between 

two and three treatment groups. He seeks a well-known distribution for the remission 

patterns to compare the two groups. The survival times of the different groups vary, so 

these differences can easily be delineated by drawing graphs of the estimated 

survivorship function. The only disadvantage is that this graph does not reveal 

whether the differences are significant or casual variations. So, a need for a statistical 

test arises. 

There are several parametric and non-parametric tests to compare two survival 

distributions. Since we have no information of the survival distribution that the data 

follow, we would continue to use non-parametric methods to compare the two 

survival distributions. We will present five tests that can be used for data with or 

without censored observations.  

For each test we suppose that we have two groups of patients differing with 

respect to one factor, whose effect on the survival probability we want to study. 

Suppose that the n1 observations in 1st group are samples from distribution with 

survivorship function S1(t) and the n2 observations in 2nd group are samples from a 

distribution with survivorship function S2(t). In testing the significance of the 

difference between the two distributions, we need a hypothesis which concedes that 

the above survivorship functions are the same. So, we have 

The null hypothesis (H0) : 1 2( ) ( )=S t S t  

The alternative two-sided hypothesis (H1) : 1 2( ) ( )≠S t S t   

                          1 2 1 2(which means that ( ) ( ) or ( ) ( ))> <S t S t S t S t        (Lee, 1992) 
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5.2 Gehan’s Generalized Wilcoxon Test 

In Gehan’s Generalized Wilcoxon Test we consider two groups with n1 and n2 

individuals (observations) respectively differing in a certain factor, whose influence 

upon the failure time we want to study. The influence is usually reflected on the 

respective survival curves. Every observation xi or xi
+ (in case of censored 

observations) of the first group is compared with every observation yi or yi
+ (in case of 

censored observations) of the second group and a score Uij is given to the result of 

every comparison. The scores that are used depend on the kind of the hypothesis test, 

and in this case we want to test that the survival function S1(t) is greater than S2(t). So, 

                           H0: S1(t) = S2(t)   against   H1: S1(t) > S2(t) 

We also define the Uij to be: 

                                  

 +1,  if x  or x  

0,         otherwise       

1,  if x  or x

+

+

 > ≥


= 
 − < ≤

i j i j

ij

i j i j

y y

U

y y

 

And the test statistic is calculated by: 

                                                    
1 2

1 1= =

=∑∑
n n

ij

i j

W U  

where the sum is over all n1n2 comparisons. Hence, there is a contribution of the test 

statistic W for every comparison where both observations are failures and for every 

comparison where a censored observation is equal to or larger than a failure. 

In case of large populations the test statistic W is calculated with difficulty. Mantel 

(1967) shows that it can be calculated in an alternative way by assigning a score to 

each observation based on its relative ranking. According to his proposal, instead of 

comparing each observation of the first sample with each one of the second sample 

(Gehan’s Test) we could combine the two samples into a single pooled sample of 

n1+n2 observations and compare each observation i of our new sample with the rest 

n1+n2-1 observations. The n1+n2 Ui’s define a finite population with mean zero and 

1

1=

=∑
n

i

i

W U  where the summation is over Ui of the first sample only. From the above 

results if H1 is true, W would be a large positive number and under the null hypothesis 

H0 can be consider approximately normally distributed with mean zero and variance   
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1 2
2

1 2

1

1 2 1 2

var( )
( )( 1)

+

==
+ + −

∑
n n

i

i

n n U

W
n n n n

. Since W is discrete, an appropriate continuity 

correction of 1 is used when there are no censored observations. Otherwise, a 

continuity correction of 0.5 would probably be appropriate. 

Since W has an asymptotically normal distribution with mean zero and variance 

var(W), 
var( )

=
W

Z
W

 has standard normal distribution with mean 0 and variance 1. 

To complete our test we should present the rejection region, which for null hypothesis  

                    H0: S1(t)=S2(t) against H1: S1(t)≠ S2(t), is  | Z | > zα/2  

where P( Z > zα given that H0 is correct)=α. 

The number Ui can be computed in two stages. The first stage imputes, for each 

observation, unity plus the number of remaining observations that it is definitely 

larger than R1i. The second stage yields R2i, which is unity plus the number of 

remaining observations that the particular observation is definitely less than. Then    

Ui = R1i – R2i   (Lee, 1992)   

 

5.3 The Cox-Mantel Test 
 

 Suppose that we have two groups of units, where the units of the first group 

satisfy normal conditions, while the units of the second group differ as compared to 

those of the first with respect to a certain feature. 

We combine the failure and censored times of units for both groups into a new one 

and we rank them in ascending order. Let t(1)<t(2)<…<t(n) be the distinct failure times 

in the two groups together and mi the number of failure times equal to ti, so that 

                                          1 2

1=

= +∑
n

i

i

m r r  

Further, let R(t) -which is called the risk set at time t- be the set of units still 

exposed to the risk of failure at time t, whose failure of censoring times are at least t. 

Let r1i and r2i be the number of units that are exposed to risk failure R(ti) and belong to 

the first and to the second group respectively. The total number of units in the risk set 

at each time ti is given by the sum ri=r1i+r2i. 
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According to Cox (91972), under the null hypothesis H0: S1(t)=S2(t) an asymptotic 

two-sample test is thus obtained by treating the statistic =
U

C
I

 as a standard normal 

variate with mean zero and variance 1. The quantities U and I are defined as:                                                

                                               2

1=

= −∑
n

i i

i

U r m A , 

 where Ai is the proportion of ri that belong to group 2, that is 2= i
i

i

r
A

r
 and 

1

( )
(1 )

1=

−
= ⋅ ⋅ −

−∑
n

i i i
i i

i i

m r m
I A A

r
. To conclude, we also have to define the rejection 

region which is |C| > Z1-α for the alternative hypothesis H1: S1(t)≠ S2(t). (Lee, 1992) 

 

5.4 The Logrank Test 
 

The Longrank test is a Mantel’s (1966) generalization of the Savage (1956) test 

which is generally known only as a test for scale. Although the test can be used for the 

comparison of Survival curves of more than two groups differing respectively to one 

factor, it is mainly used for the case of two groups only. We assign to each 

observation of both groups a score wi, which is the logarithm of the survival function. 

This score differs in the general form according to whether the observation is censored 

or not.  

Altshuler (1970) estimated the log survival function at ti using ( )
i

j

i

j t j

m
e t

r≤

− = −∑ , 

where mj is the number of failure until the time tj while rj is the number of units 

exposed to risk failure prior to time tj.  

 Peto and Peto suggested that for an uncensored observation ti the scores are given 

by wi=1 - e(ti), while for a censored observation ti
+ the score is wi= - e(tj) with tj 

represent the largest uncensored observation such that j it t+≤ . Thus, the larger the 

uncensored observation becomes, the smaller its score. Censored observations receive 

negative scores, uncensored observations receive positive scores and the total scores 

for the two groups sum to zero. The logrank test is based on the sum S of the w scores 

in one of the two groups. The combined variance of S is then given by: 
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1 2

2

1 2

1 1 2

11 2 1 2 1 2 1 2

( )
var( )

( )( 1) ( )( 1)

n n

i n
j j ji

j j

n n w
m r m n n

S
n n n n r n n n n

+

=

=

⋅  − ⋅
= = ⋅ 

+ + − + + −  

∑
∑  

The two-sided hypothesis test that we are interested in is: 

H0: There is no statistically significant difference of the survival of the groups 

(thus, S1(t)=S2(t)) 

H1: There is statistically significant difference of the survival of the groups (thus, 

S1(t)≠ S2(t)) 

The test statistic 
var( )

S
L

s
=  follows the asymptotically standard normal distribution 

under the null hypothesis. If S is obtained from group 1, the critical region is L<-Zα. If 

S is obtained from group 2, the critical region is L>Zα, where α is the significance 

level for testing Ho against H1. (Lee, 1992) 

 

5.5 Peto and Peto’s Generalized Wilcoxon Test 
 

Peto and Peto described another generalization of Wilcoxon’s Test for two groups 

in 1972. This test is similar to the Logrank Test, which means that it assigns a score to 

each observation in both groups, taking  into account whether the observation is 

censored or not. The only difference lies between the scores that are used. 

For an uncensored observation t, the score is 1
ˆ ˆ( ) ( ) 1i i iu S t S t −= + −  and 0

ˆ( ) 1S t = , 

while for a censored observation tj
+  the score is ˆ( ) 1j iu S t= − , where i jt t+≤ , where 

ˆ( )S t  is the Kaplan-Meier estimate of the survival function. These generalized 

Wilcoxon scores sum to zero.  

The test procedure after the scores are assigned is the same as for the Logrank 

Test. In other words, censored observations receive negative scores, uncensored 

observations receive positive scores and the total scores for the two groups sum to 

zero. The next step is to calculate the variance of the sum S of the u scores in one of 

the two groups which is given by 

    

1 2

2

1 2

1 1 2

11 2 1 2 1 2 1 2

( )
var( )

( )( 1) ( )( 1)

n n

i n
j j ji

j j

n n u
m r m n n

S
n n n n r n n n n

+

=

=

⋅  − ⋅
= = ⋅ 

+ + − + + −  

∑
∑  
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The two-sided hypothesis test is the same as in the Logrank test and so is the test 

statistic 
var( )

S
L

s
=  which follows the asymptotically standard normal distribution 

under the null hypothesis. If S is obtained from group 1, the critical region is L<-Zα. If 

S is obtained from group 2, the critical region is L>Zα, where α is the significance 

level for testing Ho against H1. (Lee, 1992) 

 

5.6 Ascendancy over the Tests 
 

All the above tests are based on rank statistics obtained from scores assigned to 

each observation. They can be further grouped into two categories: 

a) Generalization of the Wilcoxon Test (to which category belongs Gehan’s and Peto 

and Peto’s) 

b) Non-Wilcoxon Test (concerning Cox-Mantel and the Logrank Test). The S statistic    

which equals to the sum of w scores in group 2 in the Logrank Test is the same as 

U of the Cox-Mantel Test. 

A generalization of the Kruskal-Wallis test, which extends Gehan’s generalization 

test, is proposed by Breslow (1970) for testing the quality of k continuous distribution 

functions when subjects are subject to arbitrary right censorship. The distribution of 

the censoring variables is allowed to differ for different populations. An alternative 

statistic is proposed for use when the censoring distributions may be assumed equal. 

These statistics have asymptotic chi-squared distributions under their respective null 

hypothesis, whether the censoring variables are regarded as random or as fixed 

numbers. 

The only reason to choose one test over another in a given circumstance is if it will 

be more powerful, that is, more likely to reject a false hypothesis. When sample sizes 

are small (n1, n2≤50), Gehan and Thomas (1969) show that Cox’s F test is more 

powerful than Gehan’s generalized Wilcoxon test if samples are from exponential or 

Weibull distributions and if there are no censored observations or the observations are 

singly censored. Lee (1975) showed that when samples are from exponential 

distributions, with or without censoring the Cox-Mantel and Logrank tests are more 

powerful and more efficient than the generalized Wilcoxon test of Gehan and Peto 

and Peto.  
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When the samples are taken from Weibull distributions with constant hazard ratio 

(i.e. the ratio of the two hazard functions does not vary with time), the results from the 

Cox-Mantel, the Logrank tests and the two generalized Wilcoxon tests are the same as 

in the exponential case. However, when the hazard ratio is non-constant, the two 

generalizations of the Wilcoxon test have more power than the other tests. Thus, the 

Logrank test is more powerful than the Wilcoxon tests in detecting departures when 

the two hazard functions are parallel (proportional hazards) or there is random but 

equal censoring and when there is no censoring in the samples (Crowley and 

Thomas, 1975). The generalized Wilcoxon tests appear to be more powerful than the 

logrank test for detecting other types of differences, for instance, when the hazard 

functions are not parallel and when there is no censoring and the logarithm of the 

survival time follows the normal distribution with equal variance but possibly 

different means.    

The generalized Wilcoxon tests give more weight to early failures than later 

failures whereas the Logrank test gives equal weight to all failures (Prentice and 

Marek, 1979). Therefore the generalized Wilcoxon tests are more likely to detect 

early differences in the two survival distributions whereas the Logrank test is more 

sensitive to differences at the right trails. 

There are situations in which neither the Logrank nor the Wilcoxon tests are very 

effective. When the two distributions differ but the hazard functions or survivorship 

functions cross, neither the Wilcoxon nor the Logrank test is very powerful and we 

have to consider other tests. For instance, Tarone and Ware (1977) discuss general 

statistics of similar form (using scores) and Fleming and Harrington (1979) and 

Fleming et al. (1980) present a two-sample test based on Smirnov-type statistic 

designed to measure the maximum distance between estimates of two distributions. 

The latter approach is shown to be more effective than the Logrank or Wilcoxon tests 

when two survival distributions differ substantially for some range of t values but not 

necessarily elsewhere.  
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CHAPTER 6 

 
 

Proportional Hazards Model 

 

 

6.1 Introduction 
 

Throughout this study, we have only considered survival models that where a 

function of chronological age, S(x), or those that are function of time since some 

initial event, S(t). In both cases the model was univariate. The procedure of estimating 

the survival function for each subgroup and each variable was the Product-Limit 

method of Kaplan and Meier (1952). 

Many cases arise in which survival probabilities are a function of two or more 

variables, such as those used for insurance premium calculations which depend on age 

at issue as well as time since issue. For instance, suppose we consider the survival of 

cancer patients as factor of time since diagnosis. We might believe that type of cancer, 

sex of patient, and type of treatment all affect survival, so we could estimate a 

separate S(t) for each type/sex/treatment combination. We consider S(t) to be 

univariate, with covariate variables taking into account separately. 

We will wish to consider parametric models, in which survival probabilities are 

determined as a function of both time and the accepted associated variables. In this 

type of model the associated variables have been taken into account by inclusion 

rather than by separation. The functional form of the multivariate parametric model 

should allow the variables to interact in a logical manner, beforehand to testing a 

proposed model against sample data. That is, the model should be plausible in light of 

our knowledge of physiology, gerontology and so forth. 

Survival analysis typically examines the relationship of the survival distribution to 

covariates. Most commonly, this examination entails the specification of a linear-like 

model for the log hazard. In this chapter we discuss a most commonly used model, the 

Cox proportional hazards model (1972) which does not require knowledge of the 

underlying distribution. The Cox regression model, or the proportional hazards model, 

is a statistical theory of counting processes that unifies and extends nonparametric 

censored survival analysis. The approach integrates the benefits on nonparametric and 
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parametric approaches to statistical inferences. The data in a Cox regression model 

includes (ti, zi), i = 1, 2, …, n, where n is the number of observations in the study, ti is 

the time of failure of the ith observation, and zi is the p-dimensional vector of 

covariates. In the presence of censoring of data, ti is replaced by ti ^ ci where ci is the 

censoring time for the ith observation. zi can also be a time-dependent covariate in 

which case zi will be replaced by zi(t). The components of zi may represent various 

features thought to affect failure time such as, treatments, virtual properties of the 

individuals, or, exogenous variables. Further components of zi may be synthesized to 

examine interaction effects, in a way that is broadly familiar from multiply regression 

analysis. Finally, the explanatory variables may be classified also in other ways, in 

particular as for each individual constant or time dependent. (Cox DR and Oakes D, 

1984) 

 

 

6.2 Simple Linear Regression 
 

A simple linear regression model is a model with a single explanatory variable and 

is represented as 0 1
ˆ
i iY Xβ β= + ⋅ . In this equation, ˆ

iY  is the predicted value of Yi, or 

the predicted response variable given the value of Xi, the treatment variable. It is 

worthwhile to consider a simple linear regression model because it captures the 

essential properties of multiple linear regression models. When making a statistical 

model it is important to make sure that the underlying assumptions hold. Plotting 

residuals versus the x values and other residual diagnostics are useful to check the 

normality of data. Interpretation of censored data must be done carefully because it is 

not normal and thus complicate the fitting of the distribution. Since failure-time data 

is almost always censored, one would need to find a model without the underlying 

assumption of normality. 

Consider a set of observations yi, i = 1, 2,…, n, possibly censored, such that their 

cumulative distribution functions are i i

i

y
f

µ
σ

 −
 
 

 where µi  and σi  are the respective 

population mean and population standard deviation. Standardized residuals, for this 

model, are defined to be 
ˆ

ˆ
ˆ

i i
i

i

y µ
ε

σ
−

= , where ˆ
iµ  and ˆ

iσ are the maximum likelihood 
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estimates of µ and σ respectively. These residuals should look like a possibly censored 

random sample from a standardized location-scale distribution, i.e. µ = 0, σ = 1, and 

the distribution should be normal or logistic. Residual plots can be made in several 

different ways. If the residuals are plotted against a certain explanatory variable, the 

plot can show the variable's explanatory power. 

When the observation, yi, is censored then the residual, îε , is also censored. Thus 

for censored data, all we can say is that the actual residual would have been larger 

than the censored residual. Plotting these standardized residuals, îε , versus the 

predicted values of ˆ
iy   will help detect nonlinearity, if the data is not heavily 

censored. 

A cumulative distribution function, c.d.f., is often a common way to summarize 

and display data. If one plots the c.d.f. versus x, the graph produced will provide 

information on percentiles, dispersion, and general features of the distribution of the 

data. The c.d.f. can also be the basis for construction of goodness of fit tests for the 

hypothesized probability models. (Lindsay Smith, 2004) 

 

6.3 Proportional Hazards Model 
 

Assume a set of explanatory variables denoted by z, which represents a collection 

of predictor variables that is being modelled to predict individual’s hazard. Let an 

arbitrary hazard rate be  

                                                       h(t, z) = h0(t)ψ(z,β)                  (Cox & Oakes,1984)  

where, h0(t) is an arbitrary unspecified base-line hazard function for a continuous t 

common to all individuals, under the standard conditions z=0, ψ(z,β) is the expression 

of the explanatory variables contained in the vector z, β is a vector of regression 

parameters expressing the strength of dependence of distribution of t on z,  and h(t, z) 

is the hazard function at time t for an individual with covariates z. The density 

function, f(t) is  

                                                         f(t,z)=h(t,z)S(t,z) 

where S(t) is the survival function defined by 

                                     [ ] ( , )

0 0

0

( , ) exp( ( ) ( , ) ) ( )
t

z
S t z h u z du S t

ψ β
ψ β= − =∫  
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and 0 0

0

( ) exp ( )
t

S t h u du
 

= − 
 
∫  represents the generator of Lehmann family. 

Then we can see that the survivor function of t for a covariate value, z, is obtained 

raising the base-line survivor function, S0 (t), to the power ψ(z,β). 

The regression coefficients, β, may or may not be estimated with assumptions 

made about the hazard function. If β is estimated with assumptions made about the 

hazard function then one would maximize the likelihood functions and would 

consider contributions made to the hazard rate by censored data. 

Covariates act multiplicatively on the hazard function. If h0=h, our hazard function 

reduces to the exponential regression model. The Weibull distribution is a special case 

where 1

0 ( ) ( ) ph t hp ht −= . The conditional density function of t given z is 

                     0 0

0

( , ) ( ) ( , ) exp ( , ) ( ) )
t

F t z h t z z h u duψ β ψ β
 

= − 
 

∫  

There are three parameterizations for the expression ( , )zψ β : 

• The log-linear form ( , )zψ β =exp(βz) and h(t, z) = h0(t) exp(βz) 

• The linear form ψ(z,β)=1+βz  and h(t, z) = h0(t)( 1+βz) 

• The logistic form ψ(z,β)=log(1+exp(βz)) and h(t, z) = h0(t) log(1+exp(βz)) 

 

6.4 Cox’s Proportional Hazards Model for Survival Data 
 

Let x1,x2,…xp be the possible prognostic variables (covariates or explanatory 

variables) and for the ith patient  observed values of the p variables are x1i,x2i,…xpi. In 

multiple-regression approach, the independent variable is the survival time of the ith 

patient and a function of ti and x1i,x2i,…xpi let be 

w(ti)=f(x1i,x2i,…xpi)=exp(β1x1+β2x2+…+βpxpi) 

Regression models proposed for survival distributions generally involve the 

assumption of proportional hazard functions. A proportional hazards model possesses 

the property that different individuals have hazard functions that are proportional to 

one another, that is 1

2

( / )

( / )

h t x

h t x
 the ratio of the hazard functions for two individuals with 

covariates x1=(x11,x21,…,xp1) and x2=(x12,x22,…,xp2) is invariable to time t. This 

implies that the hazard function, given a set of covariates x=(x1,x2,…,xp) can be 
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written as h(t/x)=h0(t)g(x) where g(x) is a function of x and h0(t) can be considered as 

a baseline hazard function of an individual for whom g(x)=1. (Lee,1992) 

When survival times are continuously distributed and the possibility of ties can be 

ignored, the form of the proportional hazards model is  

                 h(t/x)=h0(t)exp(β1x1+β2x2+…+βpxp)=h0(t)exp
1

p

j j

j

xβ
=
∑  

where h0(t) is the hazard function of the underlying survival distribution which 

expresses the time dependent part, where all the x variables are ignored, that is, all x’s 

equal zero, and β’s are regression coefficients.  

A particular form of h0(t) is needed for the estimation of its parameters, but it is 

impossible since the form is unknown. So, it would be more convenient if the 

assumption of the particular form of h0(t) was unnecessary. This approach used by 

Cox in 1972 when he proposed the Cox’s Proportional Hazards Model, which is non-

parametric model with respect to time, but parametric in terms of the covariates, 

which uses the hazard function as the dependent variables. (Armitage et 

al,1994,Lee,1992) 

 It is clear that Cox’s model assumes that the hazard of the study group is 

proportional to that of the underlying survival distribution h0(t). It can be shown that it 

is equivalent to  

1

exp

0( ) [ ( )]

p

j j

j

x

S t S t
β

+
∑

=  

 

6.5 Regression Model 
 

If we apply the logarithm to the Cox proportional hazard model  

                                   1 1 2 2

10

( )
log ...

( )

p
j

e i i p pi j j

j

h t
x x x x

h t
β β β β

=

= + + + =∑  

we have a standard multiple-regression model with the prognostic variables as 

independent variables and a function of the hazard as the dependent variable. 

Our target is to identify important prognostic factors, which means to identify from 

the p independent variables a subset of variables that relate significantly to the hazard 

and consequently the length of survival of the patient.  So, we will examine the 

hypothesis H0: βi=0, there is not a significance correlation between the independent 
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variable and the survival of the object over H1: βi≠0, there is a significance correlation 

between the independent variable and the survival of the object. In this method, we 

can select the most related independent variables to survival of the objects, while in 

the Cox’s regression model we can define a prognostic index of the ratio 
0

( )
log

( )

j

e

h t

h t
 

that can be used to compare prognosis between objects, that is, to compare the relative 

risk for objects with different values of the independent variables. In this case the 

model which can be used is: 1 1 1 2 2 2

0

( )
log ( ) ( ) ... ( )

( )

j

e p p p

h t
x x x x x x

h t
β β β= − + − + + −  

where jx is the average of the jth independent variable for all objects, then h0(t) is the 

hazard function when all variables are at their average values (Lee, 1992). 

 

 

6.6 Accelerated life model 
 

Suppose that there are two eventualities represented by values 0 and 1 of the 

explanatory variable z.  Let the survival function at z=0 be S0(t); in the accelerated life 

model there is a constant ψ such that the survivor function at z=1, written variously 

S1(t) is S1(t)=S0(ψt) so that, 

                                 f1(t)=ψ·f0(ψt)   and h1(t)=ψ·h0(ψt) 

A stronger version is that any individual having time t/ψ under z=1, i.e. the 

corresponding random variables are related by T1=T0/ψ. 

In general, with the arbitrary constant vector z of explanatory variables, suppose 

that there is a function ψ(z) such that the survivor function, density and hazard are 

respectively  

                                              S(t,z)=S0(tψ(z)) 

                                               f(t,z)=f0[tψ(z)]ψ(z) 

                                              h(t,z)=h0[tψ(z)]ψ(z) 

If S0(t) refers to the standard conditions z=0 then ψ(0)=1. A representation in terms of 

random variables is 0

( )

T
T

zψ
= ,  where T0 has Survivor function S0(t). If µ0=E(lnT0), 

we can write this as lnT=µ0-lnψ(z)+ε, where ε is a random variable of zero mean with 

distribution not depending on z. In problems with a limited number of distinct values 
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of z, it may be unnecessary to specify ψ(z) further. In other contexts, a parametric form 

ψ(z) may be needed; we then write ψ(z;β). Since ψ(z;β)≥0, ψ(0;β)=1, a natural 

candidate is  

                                                       ( ; ) zz eβψ β Τ=  

where the parameter of vector β is q x 1. Then lnT=µ0-lnψ(z)+ε, can be written as a 

linear regression model 

                                                      lnT=µ0-β
Τ
z+ε. 

Note for the comparison of two groups, with a single binary explanatory variable we 

get                                                        

                                                      ( ; )z eβψ β =             (D.R Cox and D. Oakes, 1984) 
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CHAPTER 7 

 
 

Application of Survival Analysis in Economics 

 
 

7.1 Introduction 
 

The first use of survival analysis and duration models comes from medical 

research. Survival analysis involves the modelling of time to event data; in this 

context, death or failure is considered an "event" in the survival analysis literature. 

Although at the beginning the survival analysis was used to study death as an event 

specific to medical studies and demographical studies, as from the '70s these statistical 

techniques have been increasingly used in economics and social sciences. In the area 

of labor economics, for instance, employment durations are treated as survival times 

and analyzed accordingly (Heckman and Singer, 1985; Kiefer, 1988; Lancaster, 

1990). Recently, survival analysis approaches have been proposed for analyzing 

medical costs. In the survival analysis approach to cost data, individuals’ cumulative 

costs are treated like survival times and analyzed accordingly (Dudley et al., 1983; 

Fenn et al., 1995, 1996). 

We explain above the assumptions necessary for a survival analysis to be valid and 

show how they might be violated when survival analysis is applied directly to possibly 

censored data on cumulative costs. We present some alternative, nonparametric 

methods that have been developed, and show how the results of these methods differ 

from the results of survival analysis in a real costs dataset. 

 

7.2 Survival Analysis 
 

7.2.1 The Kaplan-Meier Curve 
 

The Kaplan–Meier or Product Limit estimator KM(t) estimates the probability that 

the time-to-event or time-to-failure T exceeds any given value t (Kaplan and Meier, 

1958). It is typically plotted as a function of t over the range of times of interest and is 

a decreasing curve with value 1 at time zero and other values given by: 

                                        ( )
: 

( ) 1
i

i

t

i t t

KM t r
<

= −∏      (1) 
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where {t1, t2, …} are the observed failure times and 
it

r  is the estimated hazard or risk 

of failure at time ti, among all individuals at risk of failure at time ti. 

From expression (1), it is clear that the key to an unbiased Kaplan–Meier estimator 

is an unbiased set of estimators of the hazards 
it

r  at the observed failure times. With 

censoring, some individuals may be lost to follow-up before a given failure time ti, in 

which case we cannot observe the complete at-risk population at this time. In this 

situation, the survival analyst estimates the hazard of failure at time ti by the observed 

failure rate among those at risk and still under observation at ti. For this to be 

unbiased, the individuals at risk and still under observation at ti must be representative 

of the population at risk at ti. Equivalently, the individuals censored before ti cannot 

be a selectively high or low risk subgroup. If high-risk individuals tend to be censored, 

then those remaining will constitute a selective, low-risk sample, fewer events than 

expected will occur, and the estimated hazard will underestimate the true hazard. This 

is a case of dependent censoring; the selective censoring effectively induces a 

correlation between the censoring and failure times. From Equation (1), it is clear that 

underestimating hazards will inflate the Kaplan–Meier curve and lead to 

overestimation of survival. The reverse will occur if low-risk individuals tend to be 

censored. 

Dependent censoring will occur to some extent in practically any cost-to-event 

analysis (Hallstrom and Sullivan, 1997; Lin et al., 1997). The problem arises 

because individuals tend to accrue costs at different rates, with those in poorer health 

using more resources and costing more per unit time. Consequently, individuals 

censored with low costs will tend to be those accumulating costs slowly, who in turn 

will tend to be those with lower costs-to-event. In practice the correlation between 

cost at censoring and cost-to-event may not be so extreme as to cause noticeable bias. 

However, although this correlation is unobservable, its presence in a real application 

is evidenced by the example in the next section, which shows inflation of the Kaplan–

Meier curve. In theory, unless the mapping from time t to cost accumulated by time t 

is one to one, some degree of bias is to be expected. This can happen even if there is 

independent censoring on the time scale.  

In Figure 1 the magnitude of the bias of the Kaplan–Meier method applied to costs 

when individuals accumulate costs at different rates is illustrated. The figure 
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represents a 5-year study, with continuous accrual during the follow-up period. Thus, 

failure times and censoring times are completely independent in the interval 0 to 5 

years. Patients accrue costs at a rate of US$1 per month or US$10 per month, each 

with probability 0.5. Figure 1a and b show that the Kaplan–Meier method provides an 

excellent estimate of survival on the time scale, but that the methodology applied to 

costs can lead to substantial overestimation. The degree of bias is a function of the 

amount of censoring and the heterogeneity of the cost accrual rates. For instance, if 

individuals accumulate costs at a rate of either US$1 or US$2 (rather than US$10) per 

month, then the Kaplan–Meier estimate of the cost-to-event distribution Figure 1c 

shows only slight bias compared with Figure 1b. This is a result of the fact that the 

correlation between costs at censoring and costs at failure is 0.56 in the example 

depicted by Figure 1b and only 0.25 in Figure 1c. 

 

Figure 1a Kaplan–Meier estimate of the survival distribution. 
 

 

Figure 1b Kaplan–Meier estimate of the distribution of costs to event. Fifty percent 

of cases accrue costs at a rate of US$1 per month and the rest accrete costs at a rate 

of US$10 per month.  
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Figure 1c Kaplan–Meier estimate of the distribution of costs to event. Fifty percent 

of cases accrue costs at a rate of US$1 per month and the rest accrue costs at a rate of 

US$2 per month. 

 

A key feature of the previous example is that the maximum censoring time (5 

years) is at least as large as the maximum failure time. In other words, the follow-up 

period is sufficient to cover the entire range of possible failure times. In practice, this 

is not always the case. (Ruth D. Etzioni et al 1998) 

 

7.2.3 Cox Regression 

 

The Cox model is based on a modeling approach to the analysis of survival 

data. The purpose of the model is to simultaneously explore the effects of several 

variables on survival. The Cox model is a well-recognised statistical technique for 

analysing survival data. When it is used to analyse the survival of patients in a clinical 

trial, the model allows us to isolate the effects of treatment from the effects of other 

variables. The model can also be used, a priori, if it is known that there are other 

variables besides treatment that influence patient survival and these variables cannot 

be easily controlled in a clinical trial. Using the model may improve the estimate of 

treatment effect by narrowing the confidence interval. Survival times now often refer 

to the development of a particular symptom or to relapse after remission of a disease, 

as well as to the time to death. 

The Cox model is a description of the dependence of the risk of failure at any time 

t on the covariates X. It is semi-parametric in that no assumptions are made about how 

the hazard rates vary with time; however, the hazards for different covariate values are 

assumed to be proportional with a ratio that is constant over time. 
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Since classical Cox regression relates the hazard at each time t to covariates, the 

model applied to costs relates the hazard at each cumulative cost c, to covariates. For 

illustration, consider a binary covariate X taking values 0 and 1. Suppose, for the sake 

of the of discussion, that X is tumour stage at diagnosis in cancer patients; X=0 is 

localized and X=1 is metastatic disease. Suppose that the hazard for metastatic disease 

is a factor a times the hazard for localized disease. The hazard ratio a is termed the 

‘relative risk’. A relative risk of 2 in a cost analysis would mean that for metastatic 

cases, the hazard at any cost c, in terms of events per person-dollars at risk, is twice 

that for localized cases. This is not in itself a useful quantity, although it indirectly 

addresses the questions that are usually of interest in cost analyses so long as the Cox 

regression methodology is valid. These include the following: 

1) Overall, how do the costs for localized and metastatic disease compare;  

2) For a specific time-to-event, how do the costs compare, and  

3) What is an estimate of the marginal cost difference between the two groups?  

For Cox regression to be unbiased, independent censoring is required within 

groups formed by each level of the covariate X so that individuals still under 

observation are representative of the population at risk in each group, and observed 

events occur at the correct rate within each group. If censoring is dependent, the 

observed event rates in each group will be biased. If the dependent censoring 

mechanism is the same for all levels of X, then the estimate of the relative risk may 

still be unbiased; the errors caused by dependent censoring within each group may, in 

a sense, cancel out. However, if, for example, individuals at risk of failure are 

censored more often when X=1, the observed failure rate for this level of X will be 

correspondingly lower and as a result, the relative risk a will be underestimated. 

In practice, when using Cox regression for cost analysis, the accrual of costs at 

different rates leads to dependent censoring within subgroups defined by covariate 

levels. Covariates that affect the rate of cost accrual may lead to differential dependent 

censoring across groups. To demonstrate the bias that can arise when using Cox 

regression to analyze costs, we simulated a situation where for Xs0, survival is 

exponential with mean 20 months, and costs accrue at a rate of either US$1 or US$10 

per month, each with probability 0.5. For Xs1, survival is exponential with mean 10 

months, and costs accrue at a rate of either US$2 or US$20 per month, each with 

probability 0.5. This leads to a proportional hazards model in costs, with a true 
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relative risk of 1.0, since the increased rate of cost accrual is exactly balanced by the 

higher event rate when X=1.  

Assuming independent censoring in time with censoring times uniformly 

distributed in the range 0 to 20 months, the mean estimated relative risk over 100 

simulations with 500 subjects per group is 1.2 with a standard deviation of 0.1. Thus, 

analysis of data from such a model would lead to the conclusion that the costs are 

lower for X=1, which is not the case.      

In this example, the different rates of cost increase in the two groups imply 

differential dependent censoring in costs with independent censoring in time. A 

confirmation of this is the observation that the correlation between the cost at 

censoring and the cost at failure is higher in general for X=1 than for X=0. 

Consequently, the relative risk estimate is biased. In practice, the degree of bias will 

differ from one analysis to another, and will depend, among other things on the 

amount of censoring and the differential in survival and rates of cost accrual in the 

different groups. When comparing costs in two groups, bias will tend to be greater 

when the Kaplan–Meier estimate is biased only for one group than when the estimates 

for both groups are biased in the same direction. For example, bias will occur when 

rates of cost accrual are highly variable in one group and less so in the other.        

Even if it is suspected that dependent censoring will not impact too severely on the 

bias of the estimated relative risk, the proportional hazards assumption will not in 

general be satisfied when costs are increasing at different rates. Consider a simple 

model where, for low X, costs accumulate at a rate of US$1 per month with 

probability p, or 10 per month with probability 1-p.  
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CHAPTER 8 
 

 

Application of Survival Analysis in Social Work 
 

 

8.1 Introduction 
 

Survival analysis is a class of statistical methods for studying the occurrence and 

timing of events. Statistical analysis of longitudinal data, particularly censored data, 

lies at the heart of social work research, and many of social work research's empirical 

problems, such as child welfare, welfare policy, evaluation of welfare-to-work 

programs, and mental health, can be formulated as investigations of timing of event 

occurrence. Social work researchers also often need to analyze multilevel or grouped 

data (for example, event times formed by sibling groups or mother-child dyads or 

recurrences of events such as reentries into foster care), but these and other more 

robust methods can be challenging to social work researchers without a background in 

higher math.  

Social work research often involves some measurement of the time elapsed to a 

particular event, not particular event, not necessarily death, such as the time from 

admission into residential care to the date of discharge, or from referral to the end of 

an intervention. In many studies, while researchers would wish to have completed 

times for all sample members, it is often the case that a report has to be completed or 

the research terminated before the event of interest (e.g. discharge or termination) has 

occurred for every sample member. Conventionally, the analyses of such data sets 

exclude the unfinished cases or simply summarize the number of unfinished cases.  

In social work, it is commonplace to find situations where there are many different 

times of entry into a program and many different times of exit from it, but as indicated 

in the preceding paragraph, conventional approaches either cannot use all of the 

information about time that they have available or have to wait, sometimes for lengthy 

periods, to encompass all of the data. In this respect, time lapse data is rather different 

from other data, where the absence of the score or value may negate its inclusion in 

the analysis. This is wasteful and unnecessary. Survival analysis encompasses the 

basic realization that time, once passes, is a known quantity, thus it can use all 

available data in the calculation of the overall effectiveness of an intervention. 
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8.2 The Kaplan-Meier method 
 

The Kaplan-Meier method, as we already know, is the most widely-used method 

of estimation in survival analysis. It enables a researcher to construct an estimated 

survival curve using all of the available data including censored times. The survival 

curve is a plot of the probability of survival (or survival function) against time. The 

survival curve starts at 0 or ‘time zero’ where it includes all of the cases, and makes a 

step change downwards each time an event occurs. However, it is possible, if too 

crude a measure of unit of time is used, for there to be cases with the same times 

which compromises the accuracy of the estimate of the true survival curve. As the 

significance tests between groups are based on ranked time data, it is wise to choose a 

unit of time small enough to avoid tied observations. 

The survival curve is obtained by multiplying together the individual probabilities 

of an individual case surviving (i.e. not observing an event in a particular time 

interval) given survival to the beginning of that interval. Consider an individual case 

observed over a year and let p1 be the probability of surviving (i.e. remaining 

registered) the 1st day, p2 be the conditional probability of surviving (i.e. remaining 

registered) on the 2nd day given survival in the 1st day, and so on to p365. These are 

known as conditional probabilities, since they are calculated conditional on previous 

events occurring. The overall probability of surviving (remaining registered) for 100 

days is obtained by multiplying these probabilities together to give the survival 

probability P(100), say, as: 

                           (100) 1  2  3  ...  100= × × × ×P p p p p  

where, for example, p100 is estimated by the number of individuals who survived to 

99 days and who also survived to day 100/number of individuals who have survived 

to day 99. Note, that if no event (deregistration) occurs on day 100, the conditional 

probability estimate will be 1 and the estimated survival probability will not change. It 

is important to note also that censored values at 100 days do not affect the conditional 

probability estimate; however, these are subtracted from the number to 100 days in the 

estimation of p101. Survival curves are usually summarized by quoting centiles such 

as the median (50th centile) and quartile (75 per cent, 25 per cent) times to event. 

Alternatively, a number of days may be fixed and the proportion of surviving 



 
 

55 

 

individuals can be estimated from the survival curve. This is commonly used in 

medicine, where it may be used to estimate the five year survival rate for various types 

of disease. 

 

8.3 The application of the method 
 

Survival analysis was used in a study which sought to indentify patterns of 

variation in child protection registration practice (Pugh, 2003). Data were collected on 

the length of time spent on the register of every child in Wales who was on the 

register at any point during the year from 1 April 1999 until 31 March 2000. The unit 

of measurement used was the number of days that a child was registered. In addition, 

further information was collected about each child, including age, gender and category 

of registration. The sample comprised children already on the register at the start of 

the study period together with those who were newly registered during the period. 

Thus, the data set included the: 

� Total times of registration for those children who were already on the registers 

at the start of the year and were then registered during the year 

� Total times of those children who were registered and subsequently 

deregistered within the period of study 

� Elapsed times since registration for those children who remained on the 

register at the end of the year.  

Thus, total time refers to the time registered in a completed case, that is one where 

deregistration has taken place, while elapsed time refers to those unfinished cases 

where the child remained registered at the end of the study period. 

In this study, total times were available for 1,627 children, while the elapsed 

(censored) times were available for the remaining 2,042 children. Thus, the inclusion 

of the elapsed times into the analysis considerably increases the size of the sample to 

3,669 children registered at some point during the year.     
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Figure 1: Survival curve for all child protection registrations 

 

The plot of the estimated survival curve with its initially steep drop shows that 

approximately 70 per cent of all registrations end before 1,000 days. In comparison, 

the latter section of the curve, with its marked steps, indicates a comparatively small 

number of cases, with the short plateau representing periods of time in which no de-

registrations took place. 

A comparison of the quartiles and medians obtained by using only the available 

total times and those estimated using all of the data (total and elapsed times), provides 

a striking illustration of the effect of this inclusion. 

For example, the median for the total times is 256 days, whereas the median for the 

survival curve is considerably higher at 494 days.  

 

25 per cent 

quartile 
Median 

75 per cent 

quartile 

Total times 147 256 473 

Survival curve 223 494 1067 

 

Table 1: Difference between quartiles and median calculated only on completed 

registrations and those estimated using all registrations  

 

 

In this study the number of completed cases with total times represented 

approximately 44 per cent of the survival sample of 3,669 cases and the effect of 

including the elapsed times for the other 56 per cent of registrations arguably provided 

a better picture of current registration activity, where the majority of registrations are 
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significantly longer than might be expected if the calculations were based solely upon 

completed cases.  (R.Pug 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

59 

 

CHAPTER 9 

 

 

Application of Survival Analysis in Event History 

 

 

9.1 Introduction 

Event history analysis is used to study the duration until the occurrence of an event 

of interest, where the duration is measured from the time at which an individual 

becomes exposed to a ‘risk’ of experiencing the event. Therefore, an event history is a 

longitudinal record of the timing of the occurrence of one or more types of event. 

Examples include employment histories which typically include dates of any changes 

in job or employment status, and partnership histories which usually include the start 

and end dates of co-residential relationships. In an analysis of employment histories 

events of interest might be the end of an employment or unemployment spell, while a 

study of partnership histories, such as demography, might examine entry into marriage 

and marital dissolution. Demographers focus more specific on births , child mortality 

of children in the same family, occupational careers of spouses, educational careers of 

brothers, marriages, divorces and migration. In a marriage example, an event history 

model concerns a person’s marriage rate during the period that he or she is in the state 

of never having been married.  

The techniques used in event history analysis are also commonly known as 

survival analysis, duration analysis or hazard modeling. Although often used in turn 

with survival analysis, the term event history analysis is used primarily in social 

science applications where events may be repeatable and an individual’s history of 

events is of interest. 

 

 

9.2 State, event, duration and risk period 

In order to understand the nature of event history data, during a marriage for 

instance, and the purpose of the analysis we have to understand the: state, event, 

duration and risk period. 

 

State:  Is the category of the “dependent” variable, the dynamics of which we want to 

explain. At every particular point in time, each person occupies exactly one state. In 
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the analysis of marital histories, four states are generally distinguished: never married, 

married, divorced, and widowed. The set of possible states is sometimes also called 

the state space. 

 

Event: Is a passage from one state to another, that is, from an origin state to a 

destination state. In our example or marital history, a possible event is “first 

marriage”, which can be defined as the transition from the origin state, never married, 

to the destination state, married. Other possible events are: a divorce, becoming a 

widow(er), and a non-first marriage. It is important to note that the states which are 

prominent determine the definition of possible events. If only the states married and 

not married were distinguished, none of the above-mentioned events could have been 

defined. In that case, the only events that could be defined would be marriage and 

marriage breakup. 

 

Risk Period: Is the period that someone is at risk of a particular event, or exposed to a 

particular risk. Not all persons can experience each of the events under study at every 

point in time. To be able to experience a particular event, one must occupy the origin 

state defining the event, that is, one must be at risk of the event concerned. For 

example, someone can only experience a divorce when he or she is married. Thus, 

only married persons are at risk of a divorce. Furthermore, the risk period(s) for a 

divorce are the period(s) that a subject is married. Moreover, another related concept 

is the risk set. The risk set at a particular point in time is formed by all subjects who 

are at risk of experiencing the event concerned at that point in time. 

 

Duration: Is the duration of the nonoccurrence of an event during the risk period. For 

instance, when our interest focuses on “first marriage”, the analysis concerns the 

duration of nonoccurrence of a first marriage, in other words, the time that individuals 

remained in the state of never being married. In practice, the dependent variable in 

event history models is a transition rate.  

 

9.3 Censoring 

An observation is called censored if it is known that it did not experience the event 

of interest during some time, but it is not known when it did experience the event. We 
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have two types of censoring, right and left. As far as the right censoring is concerned, 

let assume we have a first-birth situation, a censored case could be a woman who is 30 

years old at the time of interview (and has no follow-up interview) and does not have 

children. For such a woman, it is known that she did not have a child until age 30, but 

it is not known whether or when she will have her first child. In left censoring we do 

not have information on the duration of nonoccurrence of the event before the start of 

the observation period. 

 

9.4 Time-varying covariates 

In hazard models we may also have data on changes in individual characteristics or 

circumstances over time. For instance, from employment histories collected in the 

British cohort studies it is possible to determine whether a person is in full-time 

education at a given point in time. In an analysis of age at first association, we might 

be interested in the relationship between an individual’s probability of partnering at 

time t and their educational status at that time. Educational record is an example of a 

time-varying covariate. While one approach would be to take the value of such 

variables at one point in time, such as the start of the observation period, this is 

wasteful and does not allow us to explore how the timing of an event relates to a 

change in the value of a covariate. 

 

9.5 Proportional hazards model 

The important goal of most event history analysis is to identify factors that are 

associated with the timing of the event of interest. The values of covariates may be 

fixed over time or time varying. One distinction between models is based on whether 

event times are assumed to be measured in continuous or discrete time. In this section 

we consider continuous-time models. Models can also be classified as either 

proportional hazards or accelerated life models, according to the way in which 

covariates are assumed to affect the timing of events. The most important 

consideration when choosing an appropriate model is the nature of the distributional 

assumption for event times. The most flexible and well known continuous-time model 

is the Cox proportional hazards model. For each individual i we observe a vector of 

covariates with values fixed across time. The hazard at time is now a function of t and 

xi, which we denote by h(t,xi) . Denote by h0(t) the hazard  at xi=0. If all covariates are 
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categorical, h0(t) is the hazard for individuals in the reference (baseline) category of 

each variable. For this reason h0(t) is often referred to as the baseline hazard. A 

proportional hazards model is written as  

h(t,xi)=h0(t)g(xi), 

 where g(x) is some function of the covariates. If the values of the covariates are 

changed from their reference categories (or, more generally, from zero) to a value xj, 

then the hazard is multiplied by g(xj). Therefore, the covariates are assumed to have a 

multiplicative effect on the hazard. The proportional hazard assumption implies that 

the effect of a change in x on the hazard is the same for all values of t. Consider the 

hazard functions for two different sets of covariate values, x1 and x2. In that case, the 

ratio of the hazards at these two values is 

1 1

2 2

( , ) ( )

( , ) ( )

h t x g x

h t x g x
=  

which is independent on t. 

 

9.6 Accelerated life model 

An accelerated life model is based on the idea that individuals experience time in 

different units. For example, suppose we wish to compare mortality risks of humans 

(x=0) and dogs (x=1). Dogs have a shorter lifespan than humans, so dogs are said to 

age faster than humans. If a year of human life is approximately equal to seven dog 

years, the relationship between the survivor functions for humans and dogs can be 

expressed as 

S(t,x=1)=S(7t,x=0)  

The Accelerated life model assumes that a change in covariate values from 0 to xj 

accelerates time by a factor g(xj)  or, equivalently, reduces the median survival time 

by a factor g(xj). While the proportional hazards model assumes that the covariates 

have a multiplicative effect on the hazard, the accelerated life model assumes that 

covariates have a multiplicative effect on the timescale. 

In practice proportional hazard models are used far more frequently than 

Accelerated life models, to the extent that Hosmer and Lemeshow (1999) state that 

“It is now accepted as the standard method for regression analysis of survival times in 

many applied settings.” However, it is not always necessary to make the distinction 

between these two types of models. Both the Weibull model and the exponential 
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model (a special case of the Weibull) can be viewed as a proportional hazard or 

Accelerated life model, and their parameters interpreted as covariate effects on the 

hazard or the timescale. 

 

9.7 Cox proportional hazards model 

The most commonly applied event history model is the Cox proportional hazards 

model. In the Cox model, g(x)=exp( β ′ x), so that 

h(t,xi)=h0(t) exp(β ′ x) 

where  β is a vector of regression coefficients. One reason for the popularity of the 

Cox model is its flexibility, the baseline hazard function h0(t) is left completely 

unspecified. Another attractive feature of the model is that the exponents of the 

regression coefficients β can be interpreted as relative risks.  

 

9.8 Application of age at first partnership 

In the example of age at first partnership, we consider the effects of educational 

inscription and the following time-constant categorical covariates: gender, region of 

residence, and father’s social class. The results from fitting a Cox model are given 

below. The 95% confidence interval for each relative risk, exp(β), provides a test of 

the null hypothesis of no effect. The null is rejected at the 5% level if the confidence 

interval does not contain the value 1. As a result, we find that the effects of gender and 

educational inscription are both significant at the 5% level. In general, a likelihood 

ratio test is preferred. A likelihood ratio test is used to compare a pair of nested 

models. For example, to test the significance of father’s social class, we compare the 

following two models: the model shown in Table 1 and the model without social 

class. The test statistic is the difference between the -2 log-likelihood values for the 

two models, which is compared to a chi-squared distribution with degrees of freedom 

equal to the difference in the number of parameters between. 
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                                               β̂                       exp( β̂ ) 95% CI for exp(β)  

Female  0.398  1.489  (1.220, 1.817)  

Region  

Scotland and the North  0.238  1.268  (0.939, 1.712)  

Wales and Midlands  0.155  1.168  (0.850, 1.606)  

Southern and Eastern  0.081  1.084  (0.765, 1.536)  

South East, including 

London 

0  1  -  

Father’s social class  

I or II (professional and 

managerial)  

-0.288  0.749  (0.549, 1.023)  

III  -0.148  0.863  (0.674, 1.104)  

IV or V (manual)   0  1  -  

Enrolled in full-time 

education  

-1.089  0.337  (0.225, 0.505)  

-2 log-likelihood                  4253.1  

 

Table 1 Results of a Cox proportional hazards analysis of age at first partnership 

 

The test statistic for comparing models with and without social class is 3.3 on 2 

degrees of freedom (p=0.192). We therefore conclude that social class has no effect on 

age at first partnership. (Yamaguchi, 1991)  

The hazard of first partnership is almost 1.5 times higher for women than for men, 

which implies that women partner at an earlier age. Enrolment in full-time education 

is associated with delayed partnership formation: being in education reduces the 

hazard of partnering by a factor of (1-0.337)×100%=66.3%. However, we should 

hesitate to interpret the effect of educational enrolment as causal because the decisions 

about when to leave education and when to partner are likely to be jointly determined, 

i.e. enrolment is potentially endogenous. 
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CHAPTER 10 

 

Application of Survival Analysis in Psychology 

 

 
10.1 Introduction 

Psychiatrists’ major aim, as far as the public health is concerned, is the prediction 

and outcome from the start of severe and potentially repeated or chronic affective 

illness with psychosis. Suicide is the most venturous consequence of depressive 

illness (Jamison KR, 1990). Mood disorder, attempted suicide and suicide have a lot 

of common features. Mood disorder, particularly depression (Guze SB., Robins E., 

1970), psychiatric patient status (Roy A., 1982) and attempted suicide (Nordstrom et 

al., 1995, Nordentoft et al., 1993) are well used predictors of suicide risk. Further 

studies suggest that the suicide risk after attempted suicide is 5-10% within a few 

years (Nordstrom et al., 1995, Nordentoft et al., 1993) and that the long-term 

suicide risk in depression is 10-15% (Jamison, 1990 and Guze, 1970). The 

assessment and prediction of suicide risk within the group of depressed psychiatric in 

patients with a high suicide risk is of great clinical concern. 

 Survival analysis and especially an application of life-table analysis (Coltont, 

1974) is used to study prediction of suicide risk over time in patient groups with and 

without a current suicide attempt.  Predicting potential suicide in those who have 

attempted suicide is difficult. There are many risk factors associated with completed 

suicide, for example: male sex, previous suicide attempts, psychiatric illness, abuse of 

alcohol, planned attempt and high lethality and intention of suicide attempt 

(Arensman E.,Kerkhof A., 1996). It is not known whether the short-term risk factors 

are the same as those which can be used to predict the suicide risk in the long term, 

but there is evidence that they may differ somewhat (Fawcett J, Scheftner WA, Fogg 

L. et al., 1990). 

 

10.2 Data set and variables 

The study was based on a database, which was obtained from the emergency unit 

of Helsinki University Central Hospital. The sample was 1018 patients who made 

1207 suicide attempts in 1983. Patients were categorized according to their age, 54% 
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were under 35 years old, their sex, 53% were women and their marital status, 47% 

were unmarried while 65% belonged to the lowest social classes. With the term 

“suicide attempt” we mean “an act with non-fatal outcome”, that is an individual will 

cause a self-harm by taking overdose from the prescribed therapeutic dosage (World 

Health Organization, 1986). For the term “physical health” three grades were used: 

good, if no disability was reported, satisfactory, if there was a tinny defect which may 

cause subjective sadness, and physical disease, if a chronic disease demands a daily 

attention.  

The estimation of physical severe event, such as death, after a suicide attempt, was 

based on the patients’ physical condition in the emergency room and the medical 

records until that time of occurrence. A suicide attempt was categorized according to 

planned (non-spontaneous) and not planned (spontaneous) into three groups: certain, 

probable and undetermined based on the intention to die (Lonnqvist J., 1977). The 

common reason in both cases was “the wish to die”. 

 

10.3 Survival Analysis 

In order to identify the long-term risk factors for suicide among all possible risk 

factors, a Cox regression model was used. Covariates used were: sex, age, social class, 

marital status, physical disease, previous suicide attempt, psychiatric treatment and 

alcohol consumption during the attempt, psychiatric surveillance at the time of 

attempt, spontaneity of the attempt, physical harm, motive and intention to die.  

For selecting the model the forward stepwise (conditional) method was used, the 

model begins as the baseline model without any variables in it and the variables are 

added into the model if they meet the selection criterion based on the P-value for the 

score statistic. We also used several variables, such as sex, age, motive, previous 

suicide attempt, previous psychiatric treatment and impulsiveness of the attempt as 

strata. 

The cumulative survival curve plot for the patients surviving is given below for 

each sex: 
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      From the sample of 1018 patients, 221 individuals who had attempted suicide in 

1983, had died. From the rest 797 patients, 68 had committed suicide, 24 women, and 

44 men. Most of those had attempted suicide before the research, except for 8 men 

and 8 women who hadn’t done so. In other words, 9.6% of the last had committed 

suicide during the last years (x2=14.562, df=1, p=0.000), a frequency of suicide which 

had increased during the research. More than 50% patients, especially 57.4% had 

changed the suicide method to a fatal attempt as shown below: 

 

Suicide method                                  Both sexes                            Men                                              Women 

Drug overdose                                         29                                        18                                                     11 

Carbon monoxide                                     4                                          4                                                       0 

Hanging                                                   15                                        10                                                      5 

Drowning                                                  1                                          0                                                      1 

Firearms                                                   2                                          1                                                       1 

Jumping under vehicles                            12                                          9                                                       3 

Jumping from high places                           5                                          3                                                       2 

Total                                                       68                                       44                                                     24 

 
 

 

 

Figure 1: Cumulative proportion of patients surviving (not 

commiting suicide) after the suicide attempt, males have less 

prognosis than females. Kaplan-Meier survival curve shows p-

value significance 0.015, long-rank statistic 10.07. 

Table 1: Suicide method for later suicide after suicide 

attempt by self-poisoning(no gender difference) 



 
 

68 

 

      A Cox multiple regression model was used to examine the long-term relative 

suicide risk factors by the end of the follow-up period, as a function of explanatory 

variables. As indicated in Table 2, the 5 variables predicted suicide are: male sex, 

previous suicide attempt, somatic disease, subjective motive and previous psychiatric 

treatment, with their estimated coefficients and their estimated standard errors. The 

Cox regression model gave the same risk factors using sex as a strata rather than a 

covariate for the model.  

 

     Risks factors                      Regression          standard error       Wald          df        significance    relative                95%  

                                                Coefficient        SE                 statistic     risk          confidence interval

  

Male sex                                       1.036                 0.296           12.245           1            0.001                  2.82               1.58-5.04 

Previous suicide attempt                0.688                 0.341             4.066           1             0.044                 1.99               1.02-3.88 

Somatic disease                            1.200                 0.597             4.034           1             0.045                 3.32               1.03-10.71 

Subjective motive: wish to die        1.073                 0.287           13.987           1            0.000                 2.92               1.67-5.13 

Previous psychiatric treatment        0.877                 0.409             4.594           1            0.032                 2.40               1.08-5.36 

 

Table 2:  Cox regression model showing long-term risk factors for suicide  
 

 

     The research was based on the suggestion that there was high suicide risk more 

than ten years while there may be factors for suicide which may affect the study in the 

long term period. The suicides continued to occur long after the first episode, 

especially among women. Over half of the patients changed their fatal method for the 

last attempt. That suicide risk is higher among males, a general rule in suicidology, 

which means that male gender may predict suicide in the follow-up study. However, 

there are studies that have found equal risk (NIELSEN B. et al 1990, Nordebtoft M. 

et al., 1993). The subjective motive “wish to die” also predicted future suicide. We 

should focus on the reason patients give for their suicide attempt. Moreover, somatic 

disease also appeared to be a risk factor for suicide. It is possible that these factors 

may vary depending on the time interval from the first attempt. In other words, we 

found that during the first year after the first attempt, the risk factors were: male, sex, 

previous suicide attempt and non-spontaneous attempt. As time goes by, male, sex 

and previous attempt were still risk factors but there were three more factors to be 

added: somatic disease, subjective motive and previous psychiatric treatment.  

      As a result of the study, males have a high suicide risk, especially during the first 

years, while there was a continuity of suicidal risk for both sexes. Somatic disease 

appeared to be a long-term risk factor for suicide. Treatment in association with 
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somatic disease and history of previous attempt seems to be very important though the 

risk remain high for over a decade (Cavanagh et al, 1999). 
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Conclusion 
 

 This work presents many applications of survival analysis. Survival analysis provides 

special techniques that are required to compare the risks for death (or of some other 

event) associated with different treatments or groups, where the risk changes over 

time. In measuring survival time, the start and end-points must be clearly defined and 

the censored observations noted. Kaplan–Meier provides a method for estimating the 

survival curve and Cox's proportional hazards model allows additional covariates to 

be included.  
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