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Abstract

Mari Barazian

COVARIANCE ESTIMATORS FOR GENERALIZED ESTIMATING EQUATIONS
IN LONGITUDINAL ANALYSIS WITH SMALL SAMPLES

June, 2017

The Generalized Estimating Equations (GEE) statistical method is a simple and
efficient approach to estimate the regression coefficient of a marginal model for
correlated responses when the associational structure is regarded as a “nuisance”. Its
most common use is to fit marginal models for longitudinal data in several fields such as
biomedical studies and social sciences. The most attractive feature of the GEE
methodology is that consistent estimates for marginal regression coefficients are
obtained even if the correlation structure is misspecified. However, the technique
requires that the sample size is large. The variance-covariance matrix of the regression
parameter coefficients is often estimated by the so-called “sandwich” variance estimator,
which is robust and performs well when the size of the sample is large. However, when
the sample size is small, the “sandwich” estimator does not have a good performance.
Specifically, in that case, bias and inefficiency appear. The main goal is to find ways in
order to decrease the bias and improve the efficiency. For this reason, some recently
developped modified variance estimators have been proposed. The current GEE
methodology focuses on the modeling of the working correlation matrix assuming a
known variance function. However, Wang, Y .-G., Lin, X. and Zhu, M. (2005) showed
that the correct choice of the correlation structure may not necessarily improve the
estimation efficiency for the regression parameters if the variance function is

misspecified.



The purpose of this thesis is to provide a review on recent developments of
modified variance estimators. One of the most attractive parts is the comparison of
their small-sample performance and the presentation of the most important results
which were obtained through simulations and one real data example. Simulation shows
that the modified estimators do well in reducing bias and increasing efficiency compared
to the GEE estimates. Hypothesis testing that is used is based on Wald tests and
t-tests on different variance estimators. Finally, the “geesmv” R package which

incorporates all of those variance estimators is used for programming purposes.
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ITepiAndn

Mot Mroapalidy

EKTIMHTEY ¥TNATAKYMANYHY. I'TA TIX TENIKETMENEY, EZIXQYEIY
EKTIMHYHY. ¥E EITANAAAMBANOMENEY METPHYEIY ME MIKPA
AEITMATA

IoUviog, 2017

H Eroatiotn| pédodog towv I'evixevpévov Edionoewy Extiunong eivon plo amir xou
UTOTEAECUATIXT TPOCEYYIOT] WOTE VO EXTUACOUUE TOV GUVTEAECTH] TOAVOROUNONG EVOS
Teprd®ptou HovTéAou 6Tav UTdEYOUY CUGYETIOEIC OTIC UETOBANTES AmOXEIONC XoL 1) BOUY
¢ cuoyEtiong Yewpeiton w¢ mopdueteog evoyhnong. H mo cuvnhouévn yeron toug
EYXELTOL OTNY TEOCUPUOY T TEQLIDELLY HOVTEAWY OE BLOTUTEIXEC UEAETEG X0 XOWVWVIXES
ETUOTAUES OTOY To OEDOUEVAL OIS APOEOUY ETOVUANUPUVOUEVES UETPNOELS OTO TEQUOUA TOU
xeovou. To mo ekxvotnd ototyelo Twv levixevyévewy Ediocwoewy Extiunong ebvar to
YEYOVOG OTL axOua xou 0TV TERITTWOT OTOL 1) BoUY| TNG CUCYETIONG BEV elvor ETaxELBOC
TEOGOLOPLOUEVT], UTOPOUUE Vol AUBO0UUE GUVETEIS EXTIUNTES TV CUVTEAECTMY TOALVOROUNOTNC
ot meprioplo poviéha. §2oToc0, xdTL TéTolo TEOUTOVETEL TNV UTtopdn Ueydhou ueyédoug
octypotog. O mivanag SLoOUaVoTG-GUVOLIXOUAVOTS TWY CUVTEAEGTGMV TOUAVOPOUNoNG
exTdToL GUVAHTWE amd TOV ETOVOUALOUEVO ‘GAVTOUITS eXTUNTY Blaxlyuavong, o onotog
OUWE BEV ATOPEREL XA CUUTERLYPORA GTNV TERITTMOT ToL UxEol ueyédoug delyuotog.
Yy mepintwon auth, yiveton aio Nty 1 eupdvior pepoAndiog 1ot ovamoTEAECUATIXOTNTAG.
[ Tov Aoyo autd €youv tpotadel apxetol dopimTixol eEXTIUNTES BLoOUAVOTS TEOXEWEVOU
vo emiteuy Vel pelworn tneg pepohndloc xou Behtiwon tne arotereopatixotntog. H mopodoo
uedodoroyla Twv I'evixevpévoy Ediohoewy Extiunone eotidlel otn yoviehonoinon tou
oot GLOYETIONG UTO TNV uTtddeoT UTapdng YVKWo TG cuvdpTNnong dloxduaong. dotéoo,
ot Wang, Lin, Zhu (2005) €dei&av ott 1 6WOTH EMAOYT| TNS BOURC CLUTYETIONS TaVOY Vo
Un BEATIOOEL TNV AMOTEASGUATIXOTNTO TNE EXTIUNONG YIo TIC TORUUETEOUC TOUAVOPOUNOTC

edv 1 cuVdETNOT BLaXOUUVONG BEV EIVAL GWOTA TEOGOLOPIGUEVT).
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O oxondg authc e Atmhwpatixrc epyasiog val Vo TIPOUGCLACEL TNV THO TEOCHITY
€0ELVOL X0 TIC TEAEUTAUES TROXTINESG AVATTUENS OYETIXA PE TOUC BLop¥wTixoUg EXTUNTES
OLOCOUOVOTG XAl VoL GUYXQIVEL T GUUTERLPORE. TOUC TV OF [xed Oelyuata 16c0 o
Yewentind umoBadpo 660 %ot OE TEAXTIXO UECK TNG TEOCOUOIKONG AhAd Xou VO
Tapadetypatog pe mporypotxd oedopéva. H npocopoiwor utodeinviet 6t ol dlopdwtixol
EXTWNTES OLoXOUAVOTG CUUTERLPELOVTOL UPXETY XAAd TN Uelwon Tng uepoindioc xow otny
aUENOT TNE AMOTEAECUATIXOTNTAS CUYXPWVOUEVOL UE TOUC EXTIUNTEC TV I'evixeuuévmv
Eliohoewy. Ot éheyyol utodéoewy mou diedyovton otneiCovtar otoug Wald tests xou
t-tests yio xde exTiunT SlaxOPAVONS X0 0TO XATIAANAO Yéyedog TOU BElYUUTOC WOTE Vo
TeploploTel To ogpdiua tunou 1. Téhog, To maxéTo mou yenoiuonoteiton yLor TNV avamTuén
TOU XATIAANAOL x@Oxa elvon To “geesmv” TG yYAwooog R, to onolo tepiéyet
EVOWUATOUEVOUS OGAOUC TOUG BLopUmTIX00C EXTIINTES BLaXVUOVONGC UE TOUC OToloug

0Oy ONOVUOOTE.
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1 Introduction

When measurements are taken from the same subject more than one time, the
responses are no longer independent. Longitudinal studies are characterized by repeated
measurements of the same individuals allowing the study of change over time. In these
studies it is reasonable to assume that the subjects are independent, but the repeated
measurements taken on each subject may not be uncorrelated. The purpose of
longitudinal data analysis is to model the relationship of the repeated measurements of
each subject to the associated covariates. Moreover, the primary goal of a longitudinal
study is to specify the change in response through time and the factors that influence
this change. With repeated measures on individuals one can capture within-individual
change, as G. Fitzmaurice et al. (2004) mentioned. An exceptional feature of
longitudinal data is that they are clustered. The clusters are composed of the repeated
measurements obtained from a single individual at different occasions. Observations
within a cluster will typically exhibit positive correlation and this correlation must be
accounted for in the analysis.

There are three types of models for longitudinal data analysis: (1) transition or
fully conditional models (Korn and Whittemore, 1979, Rosner, 1984 and Zeger and
Qaqish, 1988 etc.), (2) random effects models (Rao, 1965, Laird and Ware, 1982 and
Stiratelli, Laird and Ware, 1984 etc.) and (3) marginal models (Liang and Zeger, 1986,
Zeger and Liang, 1986 and Prentice and Zhao, 1991 etc.). Transition models are used to
specify the conditional distribution of each response given the past responses. Random
effects models describe the natural heterogeneity among subjects. Marginal models are
used to characterize the marginal expected value of a subject’s response as a function of
the subject’s covariates. Diggle, Liang and Zeger (1994) discussed these models in detail.

There are several approaches in order to analyze repeated measurements, with
the mixed-effects models and the Generalized Estimating Equations (GEE) to be the
most popularly applied. The distinct condition of mixed-effects models is that some
subset of the regression parameters typically vary from one individual to another
accounting for natural forms of heterogeneity in the population. This means that the

individuals in the population have their own subject-specific mean response feature over



time. Moreover, the mean response is modeled as a combination of population
characteristics, that are assumed to be shared by all individuals and are called fixzed
effects and subject-specific effects that are unique to a particular individual and are
called random effects. The term mized is used to demonstrate that the model contains
both fixed and random effects.

The GEE method is developed from the theory of Generalized Linear Models
(GLM) by Nelder and Wedderburn (1972). GEE is used to estimate the regression
parameters in marginal models of longitudinal data in which the link function and the
variance function take the forms of those in GLM.

Generalized Linear Models (GLM) are widely used to estimate regression
coefficients of a linear model. This class of models can be applied to both continuous
and discrete data and introduce a likelihood-based method in which the distribution of
the response variable is a member of the exponential family. The main feature that
characterizes this methodology is the existance of one random component and one
systematic component called linear predictor and the link between those two. The
monotone link function which relates the expected responses and the linear predictor
may not be linear.

Another method that is closely related to the GLM is the quasi-likelihood
method (QL) proposed by Wedderburn (1974) and explored by McCullagh and Nelder
(1989). The QL method requires only the first two moments, mean and variance, for
estimating the regression parameters when the distribution may not be from an
exponential family. The main thing that differentiates the QL method of the GLM
method is that the former does not have a likelihood function as it does not assume a
full distributional specification, so the inference about the parameters relies solely on
limit theory results. However, both of these methods assume independence of the
observations.

Despite the fact that these methods are really useful to a statistician, there are
some important limitations to their use. The lack of independence among the repeated
measures of the same individual or the existence of clustered data make the application
of the GLM or the QL method inappropriate. Clustered data are data whose

observations come into clusters showing that there are subjects with common



characteristics. Moreover, clustered data arise when each individual is measured
repeatedly through time so we expect the responses within a cluster to be correlated.

However, one could use maximum likelihood methods that typically take into
account the dependencies within a cluster but these methods have two important
disadvantages; they are computationally difficult and they are sensitive to the
misspecification of the correlation structure.

A straightforward application of the generalized linear models to longitudinal
data is not correct, as mentioned before, due to the lack of independence among the
repeated measurements of the same individual. The approach for extending generalized
linear models to longitudinal data leads to a class of regression models known as
marginal models. The name of these models indicates that the model for the mean
response depends only on the covariates of interest and not on any random effects or
previous responses. An asset of marginal models is that they require only a regression
model for the mean response and not any distributional assumption for the
observations. The only assumptions that marginal models rely on are those about the
mean response. The avoidance of distributional assumptions leads to a method of
estimation known as Generalized Estimating Equations (GEE).

The GEE technique is asymptotic. Thus, in the case of small sample sizes, GEE
may result in biased estimates. Notice that the GEE function is an extension of the
quasi-likelihood which is the true likelihood when the distribution is from an
exponential family. This motivates us to use the bias-correction technique in maximum
likelihood estimation to reduce the bias. Under general conditions, maximum likelihood
(ML) estimators are consistent, but they are not unbiased generally.

The GEE method that was proposed by Liang and Zeger (1986) and Zeger and
Liang (1986) is a synthesis of the GLM and the QL method. On one hand, it requires
correct specification of the model for the response mean and on the other hand it allows
us to adopt a working assumption for the correlation structure. As in the GLM
procedure, the mean is also described through a link function that is the connection
between the response variable and the linear predictor. The GEE methodology has
three main advantages that attract a statistician’s attention; (i) When the inference is

intended to be population-based, GEE treats the variance-covariance matrix of the



responses as a “nuisance” parameter. (ii) The regression parameter estimates are
consistent and asymptotically normal even if the correlation structure of the responses
is misspecified and (iii) GEE is computationally simple enough, as it relaxes the
distribution assumption; it is necessary to specify correctly the marginal mean and
variance as well as the link function between the mean and the covariates of interest.

As it is well known, the variance estimators of parameters of interest are really
useful in hypothesis testing. In order to obtain valid inference, it is actually important
to have accurate estimates. As it was mentioned before, the GEE methodology with the
classic “sandwich” variance estimator does not have a good performance when the
sample size is small. As a result, considerable bias appears (Gunsolley JC, Getchell C,
Chinchilli VM., 1995) which in turn leads to inflated type I errors and smaller coverage
rates of the resulting confidence intervals (Wang M, Long Q., 2011). This specific
feature was the main factor for developing several modifications of variance-covariance
estimators in order to improve the small-sample performance.

This Master thesis is organised as follows: After the section of Introduction we
continue to the Section 2 in which we provide the GEE theory and methodology as well
as we introduce the notations of all nine variance estimators of GEE with their
theoretical and practical comparisons. In Section 3, the simulation procedure follows in
order to compare the performance of different variance estimators and analyze their
performance in controlling the bias and the inflated type I error. The R package
“geesmv” is proved really helpful for our simulation study. Moreover, our simulation
results are getting more understandable through a real data example in Section 4. Last
but not least, in Section 5, we give the conclusion of this thesis with a brief discussion

and some future research.



2 Generalized Estimating Equations Theory and Modified Vari-

ance Estimators With Small Samples

2.1 Background Study

2.1.1 Basic Aspects of Longitudinal Analysis

The fact that measurements of the same individuals are taken more than once
through time defines longitudinal studies. The result is the direct study of change,
while the goal is to characterize the change in response over time and the factors which
influence that change. With repeated measurements on different individuals one can
capture within-individual change, providing not only comparisons among different
individuals but also information about how individuals change during the corresponding
period. Another feature that differentiates longitudinal data from other type data is
that they are clustered. The clusters are composed of the repeated measurements taken
from the same individuals at different occasions. Additionally, observations of the same
cluster will possibly exhibit positive correlation.

It gets obvious from the above that longitudinal data have to deal with two types
of dependence: (1) homogeneity of the responses of the same individual and (2)
heterogeneity across different individuals. In a repeated measurements design the
response variable can be in the form of count data, such as the number of children laid;
binary, such as the gender of the people (male or female); categorical, such as the type
of damage to a machine, which can be aggregated into counts; lastly, it can be in the
form of continuous data, such as the growth of a child’s height. These responses may
have come from a study where the subjects have undergone some treatment.
Randomisation is required to allocate subjects to treatment groups so that bias is
avoided. Lindsey (1993, p.9) notes that randomisation allows for statements of
causality, since which treatment a subject receives is not influenced by the response that
the subject gives. It also minimises the effects of inter-response variability by
distributing it randomly over treatments, thereby ensuring homogeneity of variability.
In order to attribute causality, the relationship between the cause and the effect needs
to be strong, and the relationship should be consistent in different populations and

under different circumstances. In addition, the cause needs to lead to a single effect



(specificity) and the cause must precede the effect in time (temporality).

2.1.2 Models for Repeated Measurements

There is a great variety of different types of models which can be used in order to
analyze repeated measurements. Linear mixed effects models are the most commonly

used.

2.1.2.1 Random Effects Models

In random effects modeling one or more variables are declared as random factors.
If a model also contains fixed factors, then the model is referred to as a mixed model.
Random factors have a distribution assumed for the different levels while the values for
the levels of a fixed factor are fixed, known values which are chosen at the beginning of
the experiment and the effects of each level on the response are estimated as model
coefficients. When a factor is declared to be a random factor, then inferences can be
made on the population from which the levels of the random factor have been chosen.
Correlation can also be incorporated into the model, since observations that share the
same level of the random effect are modeled as correlated. A great variety of
bibliography related to random effects models is available (Crowder & Hand, 1990;
Davis, 2002; Fitzmaurice et al., 2004)

In a repeated measures ANOVA, a random effect for the individuals of the study
can be included in the model. As a result, positive correlation is induced between
repeated measurements through the covariance matrix of the random effects while
concerning the mean structure, random effects can be thought of as randomly varying
intercepts which account for all unmeasured factors (Fitzmaurice et al., 2004).

The repeated measures ANOVA model can be written as:

where b; is a random individual-specific effect and e;; is a within-individual

measurement of error (Crowder & Hand, 1990; Fitzmaurice et al., 2004).



There are two standard assumptions when using ANOVA for repeated measures;
(1) The observations on different subjects at each of the repeated measurement times
are independent and (2) these observations are distributed as multivariate normal.
Therefore, the b;’s are assumed to be normally distributed with mean zero and
var(b;) = o} as well as the e;; are assumed to be normally distributed with mean zero
and var(e;;) = o2. Thus, repeated measures ANOVA has two different sources of
variability; on one hand, the subject variability (07) and on the other hand the within
subject variability (¢2). In addition, the b;’s of the different individuals are uncorrelated
and the errors e;;’s are uncorrelated for different time points and for different
individuals. Lastly, it is assumed that all the correlations in the outcome variable
between repeated measurements are equal and variances of the outcome variable are the
same at each of the repeated measurements (which is known as sphericity). An example
of a covariance matrix that satisfies the sphericity condition is the compound symmetric

(CS) covariance matrix (Hand & Crowder, 1996, p. 41) :

2 2 2 2 2
oy + o; op op o o
2 2 2 2 2
aj, oy + o7 o o o,
2 2 2 2 2
o, o oy +o; ... o

2 2 2 2 2

Oj o Op .. Oyt o0g

The mean response can be written as follows since the means of b;’s and e;;’s are equal

to zero:
E(yij) = pij = x;;8

Fitzmaurice et al. (2004, p. 14) note that regression models have a wide range of
uses. Regression models include linear regression, linear logistic regression and Poisson
or log-linear regression models. Linearity means that all of these models for the mean or
a transformation of the mean are linear in the regression parameters. The regression
parameters in the model express how the covariates are related to the mean of the
response variable. The covariates can be quantitative or categorical (such as gender or

treatment group). Models which only include categorical covariates are actually



ANOVA models.

2.1.2.2 Linear Mixed Effects Models

Linear Mixed Effects Models represent one of the most widely used methods of
including the covariance matrix in the statistical analysis. Mixed effects models are
those where the mean is modeled through both random and fixed effects.

Fixed effects are those factors in a model for which the designer of the experiment
had deliberately chosen certain levels and which are the only levels of interest, rather
than randomly sampling levels from an infinite population of possible levels (Vittinghoff
et al., 2005). When a researcher chooses individuals for a study in such a way that both
males and females are included, then gender can be considered as a fixed effect.

When the researcher does not explicitly choose the levels of a factor, but rather
the levels are a sample of the possible levels available, then this is known as a random
effect (Fitzmaurice et al., 2004). In the Potthoff and Roy dataset the children included
in the study are an example of a random effect, as they were randomly selected from a
larger population of children. Including individual specific random effects into a model
can be used to account for correlation among repeated measurements (Fitzmaurice et
al., 2004; Vittinghoff et al., 2005).

Linear mixed effects models are a special case of mixed effects models in which
both the fixed and random effects occur linearly in the model function. The most

common formulation of the model is that of Laird and Ware (1982):
y; = XiB+Zb;+e€ fori=12 .. K
and
b, ~ N(0,%)
€, ~ N(0,0°T)

where y; (n; x 1) are independent and normally distributed, 3 is the p-dimensional
vector of fixed effects, b; is the g-dimensional vector of random effects, X; (n; X p) and

Z; (n; x q) are known fixed effects and random effects regressor matrices respectively,

8



and ¢; is the n;-dimensional within-individual error vector. It is assumed that b; and ¢;
are independent for different individuals and that they are independent of each other for
the same individual. A structure needs to be chosen for X, the covariance matrix of b;.
The consequences of these structural choices will be the main consideration of the
following chapters.

However, during this specific research, two main thoughts appeared. The first
one is the consequences which may appear when using an over-simplified model, namely
the ordinary linear regression model which assumes independence of repeated
measurements, to analyze repeated measures data. The second thought stands for
wondering if an appropriate model is chosen, what the consequences are of using an
incorrect parameterisation of the covariance structure for the estimates of the fixed

effects and inferences about these estimates.

2.2 Hierarchical versus Marginal Modeling Approaches

The marginal modeling approach and the hierarchical modeling approach both
assume correlation into the model. The former assumes a model which holds averaged
over all the clusters (also referred to as population averaged). Thus, the coefficients can
be interpreted as the average change in the response for a unit change in the predictor
over the entire population. The second is the hierarchical or conditional modeling
approach which assumes a model specific to each cluster (also referred to as subject
specific). Coefficients can then be interpreted as the change in the response in each
cluster in the population for a unit change in the predictor, and the marginal
information can be obtained by averaging over all the clusters.

In the analysis that follows we highlight the main parts of hierarchical modeling
as well as marginal modeling. According to Verbeke and Molenberghs (2000),
hierarchical modeling implies a two-stage process; In the first stage, which can be
named as the calculation stage, it is assumed that the following linear regression

relationship holds:

Vv = Z;8; + €



where Z; (n; X q) is a matrix of known covariates, 3; (¢ x 1) is a vector of unknown
subject-specific regression coefficients and ¢€; is the vector of residuals of length n;. This
regression equation models how the i** subject’s response evolves over time. All 3,
estimates for the observed y, for each subject are obtained separately.

In the second stage, which can be interpreted as the analysis stage, a multivariate

regression model for the subject-specific regression coefficients, 3, is assumed to be:
/Bi = Kzﬁ + bi

where K; is a matrix of known covariates, 8 (p X 1) is a vector of unknown regression
coefficients and b; is a vector of independent elements of length q. Consequently, we

obtain:

Yi=2ZiB; + €
=Z,(K:B +b;) + €
=Z;KiB+Zb; + €

=X;8+Zb; + €

where X; is the fixed effects regressor matrix. The estimates ﬁ are used to provide
inferences for 3.

However, this two-stage process is not that innocent; Firstly, information is lost
in summarising the y,; by the estimated vector of subject-specific regression coefficients,
B. Secondly, there is the problem that the covariance matrix of [‘3 is highly dependent
on the number of measurements available for each subject and also on when the
measurements were taken.

Marginal models are those that are most commonly used in order to make
inference about population means. Marginal models for longitudinal data model the
mean response and the within-subject association among repeated responses obtained
separately (Davis, 2002; Fitzmaurice et al., 2004). Marginal modeling approach assumes
that the marginal expectation (E(y;;) = ;) can be related to the covariates through a

known link function (g):

10



9(pij) = X{zjﬁ

Moreover, the conditional variance of each y;; given the covariates, depends on the

mean in the following way:
var(y;) = dv(i;)

where v(p;;) is a known variance function of the mean and ¢ is a scale parameter
(Davis, 2002; Fitzmaurice et al., 2004).

There is a great controversy in bibliography about which modeling approach is
more preferable. Lee and Nelder (2004) argue that the conditional modeling approach is
preferable to the marginal modeling approach since both marginal inferences and
conditional inferences can be obtained, i.e. one can have both E(y,;) = X;8 and
E(y;|bi) = X;8+ Z;b; . Since the expected value for the mean of the random effects is
constrained to equal zero, this means that the fixed effects estimates of a conditional
model have the same meaning as those of the marginal model. The authors show that if
the individuals in a study have significant random treatment effects (e.g. random time
effects), these will be confounded with the fixed treatment effects in a marginal model,
whereas for a conditional model these two different treatment effects will have separate
estimates. The marginal estimates for the fixed effects are then only useful if there is no
interaction effect between the subject and the treatment and this can only be checked
by means of a conditional model. In addition, the authors conclude that conditional
models allow for the estimation of two different types of error: random error and

subject-specific error, which is not possible through the marginal modeling approach.
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2.3 Generalized Estimating Equations

2.3.1 Introduction to Generalized Estimating Equations

In this section we outline the main idea of the GEE method in the context of
repeated measurements. The interest in analyzing longitudinal data is to describe the
dependence of the outcome on predictor variables (marginal expectation of the outcome
Y as a function of covariates X, i.e. F(Y]X)). Repeated measurements tend to be
correlated since they are made on the same subject. For example, two measurements
from the same subject are likely to be more correlated than two measurements from
different subjects. Since most statistical tests assume independence of observations, it is
crucial to take the within-subject correlation into account to obtain correct statistical
analysis. If we do not take the correlation into account, it can lead to a wrong test
statistic and inference, for example standard errors will likely be too small. (Burton et
al., 1998 | Zeger & Liang, 1986).

There are many techniques for analysis when the outcome variable is
approximately normally distributed (e.g. fitting growth curves for each subject using
repeated measurements). Difficulty in analysis comes from the lack of multivariate joint
distribution of the outcome variable, hence likelihood methods are not available or are
difficult to compute (Liang & Zeger 1986).

Linear models for normally distributed data have been expanded to non-normal
data using generalized estimation methods and quasi-likelihood when there is a single
observation for each subject (no repeated measurements). Quasi-likelihood approach
does not assume distribution, it only specifies a linear function between marginal
expectation of the outcome variable and covariates and assumes that variance (of the
outcome variable) is a known function of its expectation (Zeger & Liang 1986).

As it was mentioned above Generalized Estimating Equations is a general
statistical method to fit marginal models for correlated or clustered responses and it
uses a robust sandwich estimator to estimate the variance-covariance matrix of the
regression coefficient estimates. We begin by introducing some useful notation. We
assume that K subjects are measured repeatedly over time. Let Y;; denote the response

variable for the i*" subject on the j** measurement, given longitudinal data consisting of

12



K subjects, i=1,2,..., K and j=1,2,...,n;. The response variable could be continuous,
binary or a count. The nature of the response variable does have really important and
useful implications for model specification; however the notation does not distinguish
between the different types of responses. Also, let X;; be a p x 1 covariates vector.

Y, = (Y1, Yia, ..., Yin,)" denotes the response vector with the mean vector noted by

Wi = (i1, fliz, -y fhin; )" Where p;; is the corresponding 4" mean for subject i. Although
there exists within-subject correlation, the observations across subjects are assumed to
be independent. The marginal model specifying an association between p;; and the

covariates of interest X;; is given by

9(pij) = X;8 (1)

with g as a known link function and 8 an unknown p x 1 vector of regression coefficients.
The conditional variance of Y;; given X;; is Var(Y;;|X;;) = v(wi;)¢ with v as a known
variance function of j;; and ¢ a scale parameter which may need to be estimated.

For the case of univariate QL, the estimates B for a GLM are solutions of

likelihood equations:

K

u() = Y (a1 b —o

for variance function v(pu).

The estimators B are asymptotically normal with model-based covariance matrix

approximated by

5 o , 1]
V= | g k) 5

With quasi-likelihood approach, we use our own variance function (e.g., for count data,
v(p) = cp with unknown constant ¢ estimated from data), typically to permit
overdispersion.

When we misspecify the variance function, the actual asymptotic covariance

matrix of 3 is

13



K

var(B) =~ V[Z

=1

(a/'l’l)/ Uar(y’b> (a:ul)

9B [U(ﬂi)}z o8
In practice, true var(y;) is unknown. Thus, one can estimate var(ﬁA) by sample analog
(sandwich estimator ), replacing p; by fi; and var(y;) by (y; — fi;)?.

For the multivariate QL (GEE),

1

K —1 K _
var(B) ~ K[Z D;VilDi] M {Z D;VilDi]
=1 =1
with
K
M = {Z D;Vi_lvar(yi)Vi_lDi]
=1
where
_ oy

=38

To obtain estimated covariance matrix, we replace the parameters by their estimates

D;

and V; the working covariance matrix.

and we replace var(y;) by (y;, — p:)(y; — i)' to get an empirical sandwich covariance
matrix that yields more robust SE values.

To estimate 3, Liang and Zeger (1986) proposed solving the estimating equations

K

UB) = (VI (Y- ) = 0 )

where V; is the variance-covariance matrix for Y;, noted by V; = @A% Ri(a)Ai% . Let
A; = Diag(v(pi1), -, v(in,)) , while the working correlation/association structure
R;(a) describes the correlation pattern of observations within-subject with a as a vector
of association parameters specifying the correlation structure. Several types of
correlation structure can be used depending on the occasion, including independent,
exchangeable and autoregressive structure. As Ming Wang et al (2015) mention, the

estimation of a is based on an iterative fitting process using the Pearson residual

_ Yij =g

Cij = - e Additionally, the scale parameter ¢ is estimated by

14



o= ﬁ_p SE Y5t ef; with the total number of observations N = S
The GEE method yields asymptotically consistent B even when the correlation

structure is misspesified. Under mild regularity conditions (the parameter space is an

open set and the GEE function U(8) is continuously differentiable) and given the true

value of B as B, , B is asymptotically normally distributed with a mean its true value

and a covariance matrix estimated based on the “sandwich” estimator by

K o AN K 5 o\
Vo (ﬂ)/vilﬁ) Y ( (ﬁ)/vi1ﬁ> )
. (z v O ) e (S 2y 2
with «
o]V N 10y
My =S (Y vicon(Y)V; (4)
Lz ; a[@ (35

where Cov(Y;) = r;¥;’ with ¥; = Y; — f1; an estimator of the variance-covariance matrix
of Y; and a, 3, ¢ can be replaced with their consistent estimates. The specification of
the covariance matrix is not always necessary to be correct and for this reason we

usually refer to V; as *

‘working” covariance matrix. The GEE solution will be consistent
as long as E(Y; — ;) = 0, which indicates the importance of the correct specification of
the mean. Additionally, this “sandwich” estimator is robust and consistent even if the

correlation structure is misspecified, a fact that makes its use more appropriate. A

consistent estimator for the covariance matrix of 3 is given by (Zfi 1(%15)/\/—;1 88%.)1
which is also referred to as the model-based variance estimator.

Alternative estimators of the covariance matrix have been proposed by Paik
(1988) as well as by Mancl and DeRouen (2001) using Jackknife estimators for samples
with small sizes and by Pan (2001) under the assumption of a common correlation
matrix across the subjects.

Generalized Estimating Equations are based on quasi-likelihood method of
estimation. In addition to previously mentioned assumptions (expectation of outcome
variable to be a linear function of covariates and that variance is a known function of
the mean), one needs to specify the working correlation structure between the repeated

measurements for each subject. The general idea is to incorporate the correlation

structure between repeated measurements to get consistent estimators of coefficients
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and of their variances (Zeger & Liang 1986).
The next section will give the general idea of quasi-likelihood estimator of which

GEE is based on.

2.3.2 Quasi-likelihood estimator

This section is a short overview of quasi-likelihood used in GEE based on Zeger
& Liang 1986. Quasi-likelihood is a methodology for regression that requires the
specification of relationships between mean response and covariates and between mean
response and variance. Thus it does not assume a probability distribution as in the case
of full likelihood.

Let Y; be the response variable for each subject © =1,..., K and X; be p x 1
vector of covariates. Let B be p x 1 vector of regression parameters to be estimated.
Define pu; = E(Y;|X;) to be the conditional expectation of ¥; and a function of
covariates and regression parameters, so that p, = h(X;3). The inverse of h is the link
function which relates the mean response to the linear predictor X;3. For
quasi-likelihood, variance of each Y;, denoted as u;, is a known function of the
expectation p,;, so that u; = f(p;)¢. The scale parameter ¢ is treated as a nuisance

parameter. The quasi-likelihood estimator is the solution to the equations:

N

o, . _
Se(B) = Z(a—gk)ul Y, —p) =0, fork=1,2 ...,p
i=1

~

Estimators of regression parameters, 3, are obtained by iteratively reweighted the least

squares method.

2.3.3 Marginal Models

A standard GEE is known as a marginal model. Marginal models extend
generalized linear models to longitudinal data and are typically used when the inference
is population-based, rather than individual-based. The term “marginal” means that in
the model specification the expected value of the response variable Y, depends only on
covariates (fixed effects) and does not depend on subject specific random effects nor

directly on previous responses of the subject. Since the purpose is to describe the
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changes in population mean rather than changes within subjects, within-subject
correlation is regarded as a nuisance characteristic. Regression parameters and
within-subject correlation is modelled separately (Fitzmaurice et al. 2004).

Let’s introduce some notation for the repeated measurements. We have K
subjects who are measured repeatedly. Y;; denotes the response variable for the i
subject on the j** measurement occasion. A realisation of each Y;; is observed at time
ti;. The response variable can be continuous, binary, multinomial or a count. We
assume the data are unbalanced (the number of repeated measurements can be different
for subjects and/or they can be measured at different occasions) and that there are n;
repeated measurements for the i subject.

The response variable is a n; X 1 vector
YZ = (YZ17 YLQ? A }/;ni)/7 7: — 1, 2, ceey K

Y; are assumed to be independent, but observations within the subject are not assumed
to be independent. Associated with each response at a given time point j, there is a

p X 1 vector of covariates
X,‘j = (XijlaXij27 ~-~>Xijp)/7 1= 1, ...,K, j = 1, Ny

They can be either time-invariant or time-dependent. Time-invariant variable is fixed
within a subject at the same value irrespective of time point j, whereas time-dependent
variable is varying with time for each subject.

The GEE requires the following specifications for a marginal model:

(1) Conditional mean of Y;; is related to covariates by a known link function,
9(paz) = nij = Xi;8

where p;; = E(Y;;|X;;) is a conditional expectation (or mean) of the response variable
and 3 is a p X 1 vector of regression parameters.
(2) The conditional variance of each Y;; may depend on the mean response, given

the effects of covariates, as

var(Yij) = ov(pi;)
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where v(p;;) is a known variance function of the mean and ¢ is a scale parameter that
may be known or may need to be estimated (Davis, 2002; Fitzmaurice et al., 2004).
When the response is a continuous variable, then variance of each Y;; does not depend
on mean response and is var(Y;;) = ¢v(u;;) = ¢. Note that this assumes homogeneity of
variance over time, which is often too strong of an assumption.

(3) Correlation among repeated measurements is a function of the means, y;; ,
and a set of parameters, a, which characterize the within-subject correlation and need

to be estimated. The “working” covariance matrix for Y; is given by
1 1
Vi=A/Ri()A?/¢

Correlation matrices R;(a) can be different for subjects, however, it is fully specified by
a, which is the same for all subjects. A; is a n; X n; diagonal matrix with g(s;;) on the
diagonal. “Working” covariance means that we do not know the true correlation
structure between repeated measurements and are not assuming we are specifying it
correctly. We would like to get consistent estimates of regression parameters regardless

of the chosen structure (Fitzmaurice et al. 2004, Zeger & Liang 1986).

2.3.4 Working Correlation Structures

In this section we present five basic working correlation structures;

Independence

Independence is the most basic structure where each observation within a

subject is uncorrelated with another observation.
1 7=k
Cor(Y;j,Yi) = ,
0 otherwise
for instance, a 4 x 4 correlation matrix with independence structure is the

following

RIN =

o o O =
o o = O
o = O O
- o O O
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Exchangeable

In exchangeable working correlation structure, responses are assumed to be
equally correlated within an individual.

1 7=k
COT(Kj) Y;k‘) - )
«  otherwise

Rpx =

Autoregressive AR-1

Two observations closer in time are more correlated than two observations more
further in time. This structure is often used in longitudinal designs. Note that n; in this

example is 4.

COT(Y;J', i,jth) = th, t= O, Ny —j s

Toeplitz

Correlation is the same for any two observations that have the same distance in

time. Note that n; in this example is 4.

I ¢t=0
COT(Y;]',Y;,]'H) = )

Qi t:1,,nz—]

1 a1 Qg O3
(05} 1 a1 2
RTOEP =

Qo (1 1 (051

a3 oy o1 1
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Unstructured

There is no assumption made about any two observations within a subject, so
correlation can take a value between -1 and 1. This type of correlation is the most

flexible one, but the number of parameters can become too high very quickly.

1 j=k
Cor(Yij, Yir) = )
o, otherwise

I app a3 ap
Q12 1 a3 ag
oy a3 1 sy

iy Qg agg 1
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2.4 Modified Variance Estimators of Generalized Estimating
Equations with small samples

This chapter outlines a main problem that arises when the sample size is small.
Due to the fact that the fitted value fi; tends to be closer to Y; than the true value p; ,
the term 7,7, in V7 is biased for estimating E(e;e}) and the bias tends to be larger
when the sample size is much smaller. Additionally, the hypothesis testing tends to be
too liberal and the resulting confidence interval is narrow. We present the eight
variance modifications as they were proposed by Wang et. al (2015).

The first modified variance estimator is denoted by Vj;x and provides a
degrees-of-freedom adjustment of “sandwich” variance estimator proposed by
MacKinnon (1985). This specific estimator seems quite simple, as it incorporates the

factor of Ki_p , where K is the number of subjects being measured. The formula becomes

pVLZ (1)

When K — oo, then Vi, — V7 . Virg corrects the bias but increases the variability.

The second modified estimator which is denoted by Vi and proposed by
Kauermann and Carroll (2001) is a bias-corrected “sandwich” variance estimator under
the assumption of the correct specification of the correlation structure. This estimator

is given by

K -1 K -1

Vio = <Z D;V;lDZ) Myc (Z D;V;lDZ) (2)
i=1 =1

with D; = %—‘g and

K
Mge = Z DV N (I; — Hy) Vex (I — H,)~/°V'D; (3)

i=1
where I; is an n; X n; identity matrix and subject leverage H;; is a diagonal matrix with

the leverage of the i*" subjects, which can be calculated by
H; = D;(X,L, D;V;'D;)"'D;V; "
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Furthermore, Vp4y is the third modified variance estimator which was proposed
by Pan (2001) with two additional assumptions. Firstly, the conditional variance of Y;;
given X;; has to be correctly specified. Secondly, a common correlation structure R, has

to exist across all subjects. This modified variance estimator is given by

K -1 K -1
Vpan = <Z D;V;lDZ) Mpan <Z D;V;lDZ) (4)

i=1 i=1

with

K K
1 . _
Mpay =Y DV {A}/2 <? > ATEXA; 1/2> Ai”} V:'D; (5)
=1

i=1

Vpan performs more efficiently as it pools data across all subjects in estimating
Cov(Y;).

We continue with the forth modified variance estimator which is denoted by
Vest and was proposed by Gosho et al (2014). Vgsr made an additional modification
on Pan’s estimator by incorporating the bias of the term

Ail/g(% Zfil A;l/infi’Ai_l/Z)A-l/z for small K. This estimator is written as

(2

K -1 K -1
Vasr = (Z D;V;lDZ) Mgsr (Z D;V;lD,;> (6)
=1 =1

with

K K
1 _ _
Measr = Z DV ! {Aiﬂ (K——p Z A, I/inf/Ai 1/2> A}ﬂ} V. 'D; (7)

i=1 i=1

The Vggr estimator has a similar bahavior with the Vpy estimator, as it also pools
data across all subjects in estimating C'ov(Y;). Particularly, Vg7 approximately equals

to Vpan when K is large enough and K >>p .

The fifth modified variance estimator which is denoted by Vj,;p and was

proposed by Mancl and DeRouen (2001) is another bias-corrected “sandwich” variance
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estimator which is written as

K -1 K -1
Viup = (Z D;V;lDZ) Muyp (Z DQV;lDz) (8)

i=1 i=1

with

K
Myp = DV (I — Hy) 'fx/ (I — H,) "'V, 'D; (9)

i=1
This estimator, unlike Vi does not assume a correctly specified correlation structure
while I, and H;; are defined the same as V.
Moreover, it is worthmentioned that Mancl and DeRouen in order to correct the

bias in finite samples, relied on the approximate identity

ignoring the term } i Hij Cov(Yi)Hg from its first-order Taylor expansion leading to
overcorrection (Wang et. al, 2015; Mancl and DeRouen, 2001).

We continue our analysis with the sixth modified variance estimator that was
proposed by Fay and Graubard (2001) and is denoted by Vgg. This estimator introduces

a further adjustment on Vj;p for a simple bias correction. The formula is given by

K -1 K -1
Vig = <Z D;VilDi) Mpc (Z D;VilDZ) (10)

=1 =1

with

K
Mpc =Y n;'DiV;'F#/V, ' Dinj ™! (11)

i=1
where n; = I, — N;. The j5™ diagonal value of n; "/? is equal to (1 — min(b, {N;};;)) " |
where N; = D/V;!D;(35 , DV, 'D,) ! and b is prespecified subjectively to avoid

extreme adjustments when N; is close to 1.
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The seventh modified variance estimator, Vj;py, provides a bias correction to the
“sandwich” variance estimator and was suggested by Morel et al (2003). Vipy

incorporates correlation on the residual cross-products and sample size and is given by

K -1 K -1
Vasn = <Z D;V;lD,.) Mgy <Z D;V;lD,.) (12)

=1 =1

with
K
Mypy =Y DIV (ki + 0,6V V; 'D; (13)
i=1
L K> (d+1
where k = ¥4 K5, = & T @+
3 otherwise
and
-1
trace <<Zfi1 D;V;IDZ) MLZ)
f:max(r’ 5 )Withog’l"gl.

Morel et al. (2003) mentioned that k is a factor to adjust the bias of empirical
variance estimator of Cov(Y;) and 4, can be bounded by 1/d. The default value for d

is 2 and for r is 1, respectively.

Last but not least, we introduce the final among the most recent variance
estimators, which is a combination of Vpan and Vj,p for pooling information from all
subjects and also reducing the bias of the estimate for e;e;. This estimator is denoted

by Viyr and is recommended by Wang and Long (2011), while it is written as

K -1 K -1
Vivr = (Z DgVi‘lDZ) Myt (Z D;V;lDZ) (14)

i=1 i=1

with
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K K
My, =Y DjVi'A[? {Z A7V - Hy) e (1 — HY) A /K} APVID,
i=1 i=1
(15)
As this estimator is the combination of the strength of both previous estimators

Vpan and V)y,p, it was supposed to perform as well as or better than those two. The

additional assumptions specified in the notation of Vp,n also need to be satisfied in

Vwer.

Since we have presented the eight most recent adjustments and corrections on
the classical “sandwich” variance estimator, we continue our analysis by comparing
theoretically those variance estimators. One can notice that all these estimators share
the same two outside terms, that is (3_~ , D/V;'D,)~'. As a consequence, the middle
matrix, M, differentiates itself among the eight corrections. Wang and Long (2011)
have shown that the modifications through the degrees-of-freedom adjustment or
bias-correction are mostly applied when the sample size is small, as V77 tends to
underestimate the variance. Additionally, Vpan, Vasr and Vi incorporate the
efficiency gain by pooling data across all subjects in order to improve the estimator of
Cov(Y;) instead of using only data from the i* subject.

Vi is the only estimator which takes into consideration both bias correction
and efficiency improvement. Thus, it is expected to outperform the other alternatives

when the two assumptions mentioned before are satisfied.

In the following tables we provide a summary of the eight modified variance

estimators that we introduced above, based on Wang et.al (2015).
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Table 1: Summary of eight modified variance estimators for GEE with small sample.

Variance estimator Modification Reference

Vg Degrees-of-freedom adjustment MacKinnon (1985)

Vie Bias correction Kauermann and Carroll (2001)
Vpan Efficiency improvement Pan (2001)

Vast Efficiency improvement Gosho et al. (2014)

Vi Bias correction Mancl and DeRouen (2001)
Vra Bias correction Fay and Graubard (2001)
VBN Bias correction Morel et al. (2003)

Vwe Bias correction and efficiency improvement Wang and Long (2011)

Table 2: Covariance matrix of the middle parts from nine
variance estimators for GEE.

Matrix M Covariance matrix of vec(M)
Mz Sr L SiTS]
Mk ZzKl(Kp S, TS,
Mkc Zi—1 S,F,T,F.S;
Mpan S S E(CL =E; ' TE E]S;
Mesr Zz 1 Si [ (Zj 1 (K- p)2E IT E ) l}si
Myrp S SiGT;GS;
Mra > BT H;
Myrpn Zfil S;N;S!

My, YK, Si[Ei(Zj \ =E;'G,T,G/E;"E,]S;

T; = Cov(vec(fi¥/")); S; = (D}V; Y @ (D}V; 1),
F; = (I — Hy) ™2 @ (I — Hy) ™2
Gi=(L-Hy) 'L -Hy) " E=A" oAl
H; = (n; "D}V, 1) @ (n; ' DiV);

N; = Cov(kvec(¥;¥;") + vec(5,,EV))).
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3 Simulation Study

This chapter aims to compare the performance of the original “sandwich”
variance estimator for small samples with the eight modified variance estimators
through simulation studies. The Wald test and t-test are used for hypothesis testing in
order to calculate the type I error rate for each estimator. We generated data sets with
equal cluster sizes. Three models, one for each type of response repeated outcome
(continuous, count and binary) are applied.

The models we used for data generation are the following:

Yij = Bo+ B X x5 + b + €5 (1)
log(uij|bi) = Bo + P X ij + b (2)

The null hypothesis is 5y = 0 and $; =0 for ¢+ = 1,2, ..., K with sample size
K =10, 20,30,40,50 and j = 1,2, ...,n with equal number of observations
within-subject (i.e., cluster size) n = 5,10. The covariate z;; follows the standard
normal distribution N (0, 1) and is independent and identical distributed. The
subject-level random effects b;’s are also independent and identical distributed from the
normal N (0,07) with o = 0.45 and the random errors are also i.i.d. from the normal
distribution N(0,c?) with ¢ = 0.8.

More specifically, for the case with continuous outcomes, b; and ¢;; are
independent with each other with the correlation parameter a = U?UTI?U? ~04.

For the case with count outcomes, according to Guo et al. (2005), the correlation

2
; ~ %%~
parameter is a ~ o2 ™ 0.3 .

Last but not least, for the case with binary outcomes the correlation parameter
is given by

02/16

~ o e g ) ~ 0.1 according to Guo et al. (2005).

a
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In Generalized Estimating Equations, the Wald test as well as the score test are
the most commonly used for the hypothesis testing. However, the Wald test gives
bigger than we expected type I error when the sample size is small and the score test
has smaller test size than the nominal level. In order to avoid these problems, two
modified tests have been proposed; the t-test and the modified score test. Supposing
that the parameter of interest is denoted by 8 and for the simple univariate case, the
null hypothesis is given by Hj : § = 0 against the alternative hypothesis H; : 5 # 0.
The test statistic for the Wald test is z = ﬁ , where V(B) can be replaced by any of
the modified variance estimators. We denote k as the estimated mean and v as the

estimated variance of V(B) The distribution of @ is approximated with a chi-square

distribution X2 where the scale parameter is given by ¢ = o5 and the degrees of freedom

B/Vk
V) ed

similar to that of Wald statistic with the degrees of freedom d ~ 2V (5)?/ @(V(ﬁ))

by d = % Moreover, the t-test has the following test statistic; ¢t = which is
(Wang and Long, 2011; Pan, 2001). This approximation incorporates the variability of
the variance estimator and as a result, it performs better compared with that proposed
by Li and Redden (2015) which depends only on the number of clusters.

Under certain regularity conditions, the maximum likelihood estimator B has
approximately in large samples a multivariate normal distribution with mean equal to
the true parameter value and variance-covariance matrix given by the inverse of the
information matrix, so that 3 ~ N,(B,17'(B)). The regularity conditions include the
following: the true parameter value 8 must be interior to the parameter space, the
log-likelihood function must be thrice differentiable, and the third derivatives must be
bounded. This result provides a basis for constructing tests of hypotheses and
confidence regions. For instance, under the hypothesis Hy : B = 3, for a fixed value 3,

the quadratic form

W = (B — By)var " (B)(B — By)

has approximately in large samples a chi-squared distribution with p degrees of freedom.
The simulation consists of 1000 Monte Carlo iterations for each model, where the
parameter estimates Bo and Bl are calculated with all nine variance estimates. Three

types of “working” correlation structures are used: independence, exchangeable and
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AR-1, while the Wald test and t-test are applied for hypothesis testing and empirical
type I error is calculated at the significance level of 0.05 . The true variance of the
regression coefficient estimate, Bl, was obtained by the variance of Bl’s from the 1000
Monte Carlo data sets. Moreover, the degrees of freedom for t-distribution vary across

different variance estimators, indicating the variability influence of variance estimators.

The following table was computed in R and provides information about the
performance of all nine variance estimators. For brevity and ease in comparing, we

present a small part of it.

Table 3: Simulation results for normal distributed re-
sponses Y;; with the underlying true correlation coeffi-
cient o = 0.2 and 95% nominal level.

n K Variance estimator V(6;)(SD)  CRz(CRy)
Exchangeable
5 10 True 0.029
Vis 0.022(0.014)  0.89(0.92)
Vi an 0.024(0.008)  0.92(0.94)
Varo 0.032(0.022)  0.93(0.95)
Vivr 0.028(0.011)  0.95(0.95)
20 True 0.013
Vig 0. 012( 05)  0.92(0.94)
Vi an 0.011(0.003)  0.93(0.94)
Varn 0.014(0.007)  0.94(0.95)
Ve 0.013(0.003)  0.94(0.95)

V(Bl) is the average estimated variance of Bi;

SD is the Monte Carlo standard deviation of the estimated

variance of fSi;

CR is the Monte Carlo coverage rate of Wald confidence

interval for (1;

Z: Wald-test; T: t-test.
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The results from all different types of outcomes (continuous, count and binary)
are similar to those in the above table and can be summarized as follows: (1) The V,z
estimator tends to underestimate the true sampling variance of Bl and the resulting
coverage rates fall far short of nominal levels.

(2) For moderate sample size, all modifications achieve similar performance in
terms of coverage rates.

(3) The coverage rates of confidence intervals based on t-tests are higher than
those using Wald tests and are closer to nominal levels in most cases.

(4) The Viyp estimator exhibits smaller bias and leads to coverage rates closer to
nominal levels comparing to the other variance estimators.

We continue by presenting the following Figures which were conducted in R and
then we summarize our results. We note that the figures based on the “independent”

working correlation structure are omitted, as they present similar trend to that of AR-1.
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Figure 1: Type I errors based on Wald test and t-tests for continuous outcomes with
the exchangeable correlation structure.
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Figure 2: Type I errors based on Wald test and t-tests for continuous outcomes with

the AR-1 correlation structure.
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Figure 4: Type I errors based on Wald test and t-tests for count outcomes with the
AR-1 correlation structure.
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Figure 5: Type I errors based on Wald test and t-tests for binary outcomes with the
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AR-1 correlation structure.
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The most interesting results from our graphical study are described below:

(1) The results based on Wald test confirm our expectation and show that the
Vi variance estimator performs better than the others. The use of V77 robust
variance estimator always results in inflated type I error, particularly when the sample
size is small, i.e. <50 . Moreover, the other estimators lead also to inflated type I error
but the degrees of freedom are smaller.

(2) The t-test for hypothesis testing performs better than the Wald test
regarding the control of type I error across all estimators, while the V, estimator still
leads to patched type I error. However, V., performs satisfactorily when the “working”
correlation structure is specified correctly, even when the sample size is small (e.g. 10).

(3) As one can realize from the Figures, the sample size K plays a really
important role to the performance of variance estimators for t-tests; the bigger the
cluster size becomes, the more conservative results we gain.

(4) Ve estimator attains worse performance than V;; based on Wald tests as
indicated by greater inflation on type I error, but improves itself when the cluster size
increases.

(5)There are some modified variance estimators that present a really conservative
performance when the sample size is small, such as the estimators Vggr and Vygn.

(6) Last but not least, Vi performs better among all nine variance estimators,
thus it is the most preferable estimator for the GEE methodology even when the sample

size is as small as 10.
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4 Data example

4.1 Background Study

Analyzing the growth curves of individuals over time or determining the effects
of the continued administration of treatments over time are examples that longitudinal
studies are required. One of the most widely known examples of growth curve analysis
is that of Potthoff and Roy (1964) data set, which will be analytically discussed and
alanyzed in this chapter. Their data consist of measurements obtained during a dental
study from 11 girls and 16 boys at the ages of 8, 10, 12 and 14. The response measure is
the distance between the pituitary and pterygomaxillary fissure for each child and the
purpose of this study is to examine growth of this structure over time and to determine
if there are significant differences between girls and boys. A simple approach to
analyzing these data would be to conduct a two sample t-test between the
measurements from the girls and the measurements from the boys. This approach,
although easy to implement, would be invalid and would ignore the time effect in the
data. This is because more than one observation from each individual would be
included in the data, thereby violating the assumption of independent observations.

Under the assumption of having data that are normally distributed and
continuous, one could perform multiple t-tests (Crowder & Hand, 1990; Davis, 2002).
Therefore, t-tests would be performed between the measurements of the girls and boys
at each occasion. The difficulty using this approach would be in deciding on an overall
conclusion, since some of the tests may show significant differences and others may not,
leading to the possibility of subjective conclusions. Alternatively, a t-test could be
performed on the data from the final measurement occasion only, but this would result
in a huge amount of data waste. In particular, this method would not allow for an
analysis of growth trends.

To compare the measurements at different time points, paired t-tests could be
performed between the data at two different ages. All possible paired combinations of
ages could be considered. Because the test comparing time 1 to time 2 will be related
to the test comparing time 2 to time 3 and time 1 to time 3, these tests are not

independent, and this can cause the probability of finding at least one test significant to
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increase spuriously (Crowder & Hand, 1990; Davis, 2002).

Subject, gender and time could be included in an analysis of variance (ANOVA)
approach to analyzing the data, resulting in the model y;; = By + 510; + Bai + [3; + €5
where ¢; is an indicator for gender and J; , B3, are adjustments to the mean response
for the i individual and the j* measurement occasion respectively, while the ¢;; is the
error term. Alternatively, time can be included as a continuous covariate, changing this
to an analysis of covariance (ANCOVA). Since subject is included in the mean structure
of this model, this approach would imply that the subjects included were the only
subjects of interest and inference could not be made beyond these individuals. It also
does not allow for the inclusion of variability arising from the random sampling process,
and therefore underestimates the variability in the data (Allison, 2005).

A different approach could be to summarise the vector of measurements for each
individual into one summary measure (Crowder & Hand, 1990). For this method to be
effective, a summary measure needs to be chosen that will adequately describe the
subjects’ data (Crowder & Hand, 1990; Davis, 2002). This method is referred to as
response feature analysis. Examples of response features include the mean, maximum
rate of increase, time to reach maximum rate of increase, half-life, or the slope of the
least squares regression line. Then, the model simplifies to y; = By + £16; + €; , where
the term y; is the response feature and ¢; is the random error of the response feature for
subject 1.

These methods require the assumption that the variance of the derived response
feature be homoscedastic. This would be violated if there are different numbers of
observations being summarised for each individual, implying that this can only be
achieved when there are no missing values and the number and sequence of
measurements are the same for each individual (Fitzmaurice et al., 2004).

All of the methods discussed so far result in information loss and make very
strong assumptions about the data, such as homogeneity of variance (Crowder & Hand,
1990; Fitzmaurice et al., 2004). None of these methods consider the covariance between
repeated measures on the same individual, which may contain much information about
the total response of an individual. Therefore, in order to take full advantage of the

longitudinal study design, methods of analysis which explicitly include the covariance
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between repeated measures should be used.

4.2 Problems related to using simple techniques

As it is mentioned above, there are many methods that can be used in
longitudinal analysis. Despite the fact that these methods are really simple in use and
can be useful for exploring data, one must be very careful as an overly simple analysis
for repeated measurements may result in efficiency loss i.e. increasing the variability
while not capitalising on the information available in the data, as well as biasing the
results (Weiss, 2005).

Loss of efficiency can result from omitting subjects, e.g. because they contain
missing data or from omitting observations in order to accommodate a certain method
of analysis.

Bias can be introduced into the analysis in a number of ways, e.g. by means of
inappropriate experimental designs, inappropriate analysis or leaving out subjects for
reasons related to the study. If the design of a study leads to subjects being sampled so
that the true sampled population is different to the intended population of interest,
then the results of the analysis will be biased in favour of the subset of the population
that was sampled. Therefore appropriate randomisation is important to avoid bias.

Moreover, if there exist groups with differences in a longitudinal study, the result
can be the same using a simple statistical method. For instance, two groups that have
different means may have the same slope over time or the slopes could be very different
or in both cases the same difference in means may be found. Therefore simple analyses
are very limited in the types of conclusions that can result in.

Alternatively, it is also very possible that two groups with very different
responses over time can result in a non-significant result. For example, two groups may
have the same average over time, but their slopes could be very different. Therefore
these groups respond differently over time, but their averages do not convey this
information (Weiss, 2005; Fitzmaurice et al., 2004). In that case, means of analysis such
as repeated measures ANOVA is too restrictive in the compound symmetry assumption

for the covariance structure, which assumes equal covariance between all repeated
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measures, and can lead to overly conservative conclusions (Fitzmaurice et al., 2004).

Much of the loss of information resulting from overly simple methods of analysis
is due to the disregard of the covariance between observations. Only by incorporating
the covariance into the analysis is it possible to make predictions of the subjects’

responses through time (Weiss, 2005).

4.3 Potthoff and Roy dataset analysis

In this section, we present the above results using one real data example in order
to campare the finite performance of different variance estimators under small sample
size. The dataset of Potthoff and Roy (1964) is a classic example of growth curve
analysis. The data are related to a dental study of orthodontic measurements on
children, which includes 11 girls and 16 boys repeatedly measured at the ages of 8, 10,
12 and 14. This study was conducted by researchers at the University of North Carolina
Dental School. The response variable is the distance, calculated in millimeters, from the
center of the pituitary to the pterygomaxillary fissure, while the covariates of interest
are age (in years) and gender (male, female). Let y;; , 1 =1,2,..., K and j =1,2,...,n;
denote the length between the pituitary and the pterygomaxillary fissure for the i
individual at the j** measurement occasion, where there are K individuals and n;
measurement occasions for the i individual (n; = 4 for all individuals in this example).

The aim is to investigate if there exist statistically significant gender differences
in dental growth measurements and their trends as age increases.

In particular, we are interested in testing the following hypothesis
Hy : Fy = Fig = Fi5 = F14 of no time effect, where F denotes the marginal distribution
of the distances at age s. As recommended for any statistical analysis, we begin by
plotting the data in order to understand the distribution of the data for each age group.
The most important relationship to plot for longitudinal data on multiple subjects is
the trend of the response over time by subject.

The box plots of Figure 7 show the minimum, first quartile, median, third
quartile, and the maximum distance measured for each time point separately. They

indicate that the measured distances have a skewed distribution (especially as the age
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increases). The increase in median gives rise to a time effect. The 95% confidence
intervals at the bottom of Figure 7 present the lower bound, point estimate, and the
upper bound for each time point separately. The point estimates increase, meaning the
older the children, the larger the observed distances between pituitary and the

pterygomaxillary fissure.

> summary (f1np)
Model:
F1 LD F1 Model

Call:

distance © age + gender

Relative Treatment Effect (RTE):

RankMeans Nobs RTE

gender0 64.79688 64 0.5953414
genderl 39.52273 44 0.3613215
age8 32.98295 27 0.3007681
agel0 43.05966 27 0.3940709
agel2 58.32812 27 0.5354456
ageld 74.26847 27 0.6830414
genderO:age8 42.87500 16 0.3923611
genderO:agel0 52.43750 16 0.4809028
genderO:agel2 72.65625 16 0.6681134
gender0O:agel4 91.21875 16 0.8399884
genderl:age8  23.09091 11 0.2091751
genderl:agel0 33.68182 11 0.3072391
genderl:agel2 44.00000 11 0.4027778
genderl:agel4 57.31818 11 0.5260943

Wald-Type Statistc (WTS):

Statistic df p-value
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gender 8.797738 1 3.016043e-03
age 103.424543 3 2.851266e-22
gender:age 4.676974 3 1.970375e-01

ANOVA-Type Statistc (ATS):

Statistic df p-value
gender 8.797738 1.00000 3.016043e-03
age 46.191394 2.55914 7.475954e-26

gender:age 1.872467 2.55914 1.412992e-01

Modified ANOVA-Type Statistic for the Whole-Plot Factors:
Statistic dfl df2 p-value

gender 8.797738 1 17.57258 0.008431029

Considering the above summary for each age group s, the rank mean of the
overall ranks (RankMeans), the number of observations (Nobs) and the point estimate
ps of the relative treatment effect (RTE) are displayed. The obtained result of 0.30 for
the age group 8 (time8) can be interpreted, for example, as follows: a randomly chosen
observation from the whole dataset results in a smaller value than a randomly chosen
observation from the age group 8 with an estimated probability of 30%. Further, since
P <Pio <p12 <pi4, the observations from the age group 8 tend to result in smaller values
than those from the age group 10 which, in return, also tends to result in smaller values
than the measurements from the age groups 12 and 14, respectively. Thus, an increase
in the effect seems to indicate the increase in the measured distances. To test the
hypothesis Hp of no time effect, Wald-Type Statistic (WTS) and Anova-Type Statistic
(ATS) can be applied, which are also displayed in the output of the model summary.
The column degrees of freedom (df) for ATS is the numerator degrees of freedom of the
F distribution as the denominator degrees of freedom is set to infinity. Both WTS and
ATS vyield highly statistically significant p-values of 2.85 x 10722 and 7.48 x 10726,
respectively, indicating that the null hypothesis of no time effect is to be rejected. To

investigate the question about which of the four distribution functions differ, we can
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apply multiple comparisons with the Bonferroni adjustment as described below:

Table 4: Multiple comparisons against the control in the dental study with Bonferroni
adjustment.

Comparison Hypothesis  p-value Adjusted p-value
Time 8 vs Time 10 Hy: Fy = F9  0.2204 0.6612
Time 8 vs Time 10 Hy: Fy = Fi» <0.0001 <0.0001
Time 8 vs Time 10 Hy: Fy = Fi; <0.0001 <0.0001

The results are presented in Table 3, where, for brevity, only the p-values
obtained from ATS are reported. In Table 3, the Bonferroni-adjusted p-value of 0.6612,
obtained for testing the age group 8 against the age group 10 (Time 8 vs. Time 10), is
calculated by multiplying the original p-value of 0.2204 by 3. Similar calculations are
also performed for the other pairwise comparisons. From the results, we can conclude
that the distance between the center of the pituitary and the pterygomaxillary fissure
significantly increases over time by observing the p-values of < 0.0001 from both WTS
and ATS. In addition, we notice significant differences between the distributions of the
measured distances for the age groups 8 and 12 and age groups 8 and 14, respectively.
To compare the obtained results and conclusions with parametric methods, we further
reanalyze the data with the lme() function in the R package nlme (Pinheiro et al. 2012).

We obtain an overall significant time effect (p-value < 0.0001). Regarding the
multiple comparisons against age group 8 and multiplying the original p-value by 3, we
obtain the adjusted p-value of 0.4395 for the comparison “Time 8 vs. Time 107, as well
as the p-values of 0.0009 and < 0.0001 for “Time 8 vs. Time 12”7 and “Time 8 vs. Time
147 respectively. Thus, both parametric and nonparametric procedures result in similar
conclusions in this example, which is not surprising since the data exhibit only a minor
degree of skewness as indicated by the box plots.

We continue our analysis with the following graph:
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Figure 8: A lattice plot (groupedData) of the average distance (mm) versus age (years)
by subject for the Potthoff and Roy data set.
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In this plot in which the data for different subjects are shown in separate panels
with the axes held constant for all the panels, allows for examination of the time-trends
within subjects and for comparison of these patterns between subjects. Through the use
of small panels in a repeating pattern Figure 8 conveys a great deal of information, the
individual time trends for 27 subjects all of them being examined at the age of 8, 10, 12
and 14 years.

As stated above, all the panels have the same vertical and horizontal scales,
allowing us to evaluate the pattern over time for each subject and also to compare
patterns between subjects. It is provided to enhance our ability to discern patterns in
both the slope (the typical change in distance per year of examination for that
particular subject) and the intercept (the average distance for the subject).

The aspect ratio of the panels (ratio of the height to the width) has been chosen,
according to an algorithm described in Cleveland (1993), to facilitate comparison of
slopes. The panels have been ordered (from left to right starting at the bottom row) by
increasing intercept. Because the subject identifiers, shown in the strip above each
panel, are unrelated to the response it would not be helpful to use the default ordering
of the panels, which is by increasing subject number. If we did so our perception of
patterns in the data would be confused by the, essentially random, ordering of the
panels. Instead we use a characteristic of the data to determine the ordering of the
panels, thereby enhancing our ability to compare across panels. For example, a question
of interest to the experimenters is whether a subject’s rate of change in distance is
related to the subject’s initial distance. If this was the case we would expect that the
slopes would show an increasing trend (or, less likely, a decreasing trend) in the left to
right, bottom to top ordering.

There is little evidence in Figure 8 of such a systematic relationship between the
subject’s initial distance and their rate of change in distance per year of measurement.
We do see that for each subject, the distance increases, more-or-less linearly, with the
increase of the age. However, there is considerable variation both in the initial distance
and in the annual rate of increase in distance. We can also see that these data are
balanced, both with respect to the number of observations on each subject, and with

respect to the times at which these observations were taken. This can be confirmed by
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cross-tabulating subject and years.

In cases like this where there are several observations (4) per subject and a
relatively simple within-subject pattern (more-or-less linear) we may want to examine
coefficients from within-subject fixed-effects fits. However, because the subjects
constitute a sample from the population of interest and we wish to drawn conclusions
about typical patterns in the population and the subject-to-subject variability of these
patterns, we will eventually want to fit a model.

We proceed our analysis by presenting some more graphs in order to provide a

further exploration of our data and then we fit the model using the R “gee” package.
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Figure 10: Plot which indicates the relationship between the distance and the age for
Men and Women for the Potthoff and Roy data set.

From the above plot one can observe that men have higher measurements of the
distance between the pituitary and the pterygomaxillary fissure compared to women.
Additionally, mens’ slope presents a sharper increase after the age of 10 while the

distance of both genders increases as age grows up.



Orthodontic Measurements

Age 8 Age 10 Age 12 Age 14
Figure 11: Orthodontic measurements by subject over time.

The scatter plot of orthodontic measurements is shown in Figure 11. One can
notice that the boys have higher measurements than the girls on average and the

measurements tend to increase with age.

The same results are also shown in Table 4.

Table 5: The mean Distance for Men and Women.

Age Distance (Men) Distance (Women)

8 22.87500 21.18182
10 23.81250 22.22727
12 25.71875 23.09091
14 27.46875 24.09091
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Figure 12: Boxplots for Intercepts and Slopes for Males and Females of the Potthoff and
Roy data set.

From the above boxplots one can observe that both, intercept and slope, present
bigger variance in men compared to women but they have almost the same mean, which
is approximately near to 22 for the intercept and 0.7 for the slope.

After examining and exploring the data set of orthodontic measurements on
children, we continue with the application of the model. The outcome variable of
interest is dental growth measurements of the distance (in millimeters) from the center
of the pituitary gland to the pterygomaxillary fissure, which was repeatedly measured
at ages 8, 10, 12 and 14 for each child. Age (in years) and gender (female or male) are

the primary covariates of interest. As the distribution of age was skewed, a square-root
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transformation yielded a distribution closer to the normal. The mean model took the

following form:

E(y) = Bo + p1 x \Jage + B2 X gender

We fitted the above model and we estimated the regression parameters and their
variance using the nine variance-estimators discussed in Chapter 2. We used the
complete data set of 27 subjects in order to perform the hypothesis testing. The results

are provided in Table 5.

Table 6: Parameter and variance estimates for case study on orthodontic measurements.

A

B Viz Vuk  Vean Vesr Vke Vup Vee  Vusn Vwr

Independence

Complete

Interc. 6.077 3.462 3.894 3.704 4.167 3.675 3.905 15.593 4.397 4.127
yage 4319 0213 0.239 0.213 0.239 0.221 0.229 0.236 0.329 0.229
gender 2.321 0.562 0.632 0.537 0.604 0.612 0.666 0.699* 0.645 0.629

Exchangeable

Complete

Interc. 6.077 3.462 3.894 3.704 4.167 3.675 3.905 6.022 4.121 4.127
vage 4319 0213 0.239 0.213 0239 0221 0.229 0.220 0.248 0.229
gender 2.321 0.562 0.632 0.537 0.604 0.612 0.666 0.699**0.669 0.629

AR1

Complete

Interc. 5.999 3.689 4.150 3.994 4.493 3.582 4.160 8.476 4.558 4.445
vage 4.249 0230 0.259 0.230 0.259 0.223 0.249 0.276 0.289 0.249
gender 2.410 0.569 0.640 0.539 0.605 0.613 0.674 0.707* 0.661 0.632

Unstructured

Complete

Interc. 5.999 3.300 3.712 3.676 4.136 3.313 3.722 5.925 3.961 4.093
vage 4270 0217 0.245 0.217 0245 0.266 0.234 0.224 0.257 0.234
gender 2.220 0.533  0.599**0.508 0.572 0.613** 0.632** 0.663* 0.630** 0.596

*Not significant on either test at the significance level of
0.01.

**Significant based only on Wald tests at the significance
level of 0.01.
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The results we obtained are consistent with our findings from the simulation
study. More specifically, both Wald-test and t-tests with the significance levels of 0.01
and 0.05 are applied for hypotheses testing.

(1) All nine variance estimators provide comparable results on hypotheses testing
of \/age with the Wald tests.

(2) t-tests at the significance level of 0.01 provide different conclusions for
gender.Thus, the choice of the small sample adjustment is significant for the statistical
results.

(3) All covariate estimates are statistically significant at a level of a = 0.01 as

well as a = 0.05 using Wald test or t-test except those with the marks.
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5 Conclusions and discussions

In this Master thesis, we analytically presented the theory concerning
Generalized Estimating Equations as long as the theory of marginal models and mixed
effects models. We continued by presenting the robust “sandwich” variance estimator
and the eight most recent variance modifications for GEE in order to improve the
sample properties especially in the case of small sample size. We implemented one
simulation study for three different types of response variables (continuous, count and
binary) and we confirmed our results using the very known dataset of Potthoff and Roy
for orthodontic measurements between 16 boys and 11 girls. The “geesmv” R package
was proved really useful in our numerical study. In addition, we emphasized two
important types of hypothesis testing for GEE, especially when the sample size is small,
Wald test and t-test. The simulation study showed that t-tests based on the variance
estimator Vi, perform well.

Despite the fact that there is a great range of bibliography about the recent
developments that concern several modified variance estimators, there is still plenty of
space in order to develop methods about improving the efficiency and the robustness of
parameter estimates. Moreover, our simulation analysis based on equal cluster sizes, so
a very interesting task for the future would be to discover how the simulation study
would be without this limitation. Additionally, greater emphasis could be given on
other issues, such as evaluating the type II error or selecting the appropriate model or
even handling the missing data under the condition of small sample size.

Another issue that could be really interesting and challenging in addition to
modified variance estimators and test statistics is the power analysis (Shih WJ, 1997).
Shih relied on Wald tests using the estimates of regression parameters and robust
variance estimators in order to provide the power calculations. However, these
calculations have two important and necessary conditions that must be fulfilled; (1) the
V (b) has to be unbiased and (2) asymptotic normality has to be satisfied. However,
when the sample size is small, the estimated power tends to be overestimated. Thus, a
modification on the power estimation must be applied incorporating the variance

estimators which were discussed in Chapter 2 for improving the efficiency.
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Appendix

1.Code used for the geesmv package in R and the 9 variance estimators for the Capter 3.

### Get necessary information (i.e., the number of clusters, cluster sizes)
### of the data set.

cluster.size(individual)

### 1 (Fay and Graubard, 2001)

data_alt <- reshape(dental, direction="long", timevar="Time",
varying=names (dental) [3:6], v.names="response", times=c(8,10,12,14))
data_alt <- data_alt[order(data_alt$subject),]

data_alt$gender <- as.numeric(data_alt$gender)

data_alt$Time <- sqrt(data_alt$Time)

formula <- response”Time+gender

fg.ind <- GEE.var.fg(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
fg.exch <- GEE.var.fg(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
fg.arl <- GEE.var.fg(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

fg.unstr <- GEE.var.fg(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured") ##Unstructured correlation structure;
fg.ind

fg.exch

fg.arl
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fg.unstr

### 2 (Gosho et al., 2014)

formula <- response”Time+gender

gst.ind <- GEE.var.gst(formula,id="subject",family=gaussian,data_alt,corstr="independ
gst.exch <- GEE.var.gst(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
gst.arl <- GEE.var.gst(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

gst.unstr <- GEE.var.gst(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured") ##Unstructured correlation structure;
gst.ind

gst.exch

gst.arl

gst.unstr

### 3 (Kauermann and Carroll, 2001)

formula <- response”Timet+gender

kc.ind <- GEE.var.kc(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
kc.exch <- GEE.var.kc(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
kc.arl <- GEE.var.kc(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

kc.unstr <- GEE.var.kc(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured") ##Unstructured correlation structure;
kc.ind

kc.exch
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kc.arl

kc.unstr

### 4 (Liang and Zeger, 1986)

formula <- response”Time+gender

1z.ind <- GEE.var.lz(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
1z.exch <- GEE.var.lz(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
lz.arl <- GEE.var.lz(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

1z.unstr <- GEE.var.lz(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured") ##Unstructured correlation structure;
1z.ind

1z.exch

1z.arl

lz.unstr

### 5 (Morel, Bokossa and Neerchal, 2003)

formula <- response”Timet+gender

mbn.ind <- GEE.var.mbn(formula,id="subject",family=gaussian,
data_alt,corstr="independence",d=2,r=1) ##Independence correlation structure;
mbn.exch <- GEE.var.mbn(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable",d=2,r=1) ##Exchangeable correlation structure;
mbn.arl <- GEE.var.mbn(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M",d=2,r=1) ##AR-1 correlation structure;

mbn.unstr <- GEE.var.mbn(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured",d=2,r=1) ##Unstructured correlation structur;

mbn.ind
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mbn.exch
mbn.arl

mbn.unstr

### 6 (Mancl and DeRouen, 2001)

formula <- response”Time+gender

md.ind <- GEE.var.md(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
md.exch <- GEE.var.md(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
md.arl <- GEE.var.md(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

md.unstr <- GEE.var.md(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured") ##Unstructured correlation structure;
md.ind

md.exch

md.arl

md.unstr

### 7 (Mackinnon, 1985)

formula <- response”Time+gender

mk.ind <- GEE.var.mk(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
mk.exch <- GEE.var.mk(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
mk.arl <- GEE.var.mk(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

mk.unstr <- GEE.var.mk(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;
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mk.ind
mk .exch
mk.arl

mk.unstr

### 8 (Pan, 2001)

formula <- response”Timet+gender

pan.ind <- GEE.var.pan(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
pan.exch <- GEE.var.pan(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
pan.arl <- GEE.var.pan(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

pan.unstr <- GEE.var.pan(formula,id="subject",family=gaussian,
data_alt,corstr="unstructured") ##Unstructured correlation structure;
pan.ind

pan.exch

pan.arl

pan.unstr

### 9 (Wang and Long, 2011)

formula <- response”Time+gender

wl.ind <- GEE.var.wl(formula,id="subject",family=gaussian,
data_alt,corstr="independence") ##Independence correlation structure;
wl.exch <- GEE.var.wl(formula,id="subject",family=gaussian,
data_alt,corstr="exchangeable") ##Exchangeable correlation structure;
wl.arl <- GEE.var.wl(formula,id="subject",family=gaussian,
data_alt,corstr="AR-M") ##AR-1 correlation structure;

wl.unstr <- GEE.var.wl(formula,id="subject",family=gaussian,
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data_alt,corstr="unstructured") ##Unstructured correlation structure;
wl.ind

wl.exch

wl.arl

wl.unstr

2.Code used for the boxplots in Chapter 4.

library("nparLD")
par (mfrow=c(2,2))

boxplot(distance ~ age, data = mydata, lwd = 1, xlab = "age",

font.lab = 1.2, cex.lab = 1.2, main = "Box Plots")

boxplot(distance ~ gender , data = mydata, lwd = 1, xlab = "gender",

ylab = "distance (mm)", font.lab 1.2, cex.lab = 1.2, main = "Box Plots")

finp <- nparLD(distance ~ age + gender, data = mydata, subject = "individual",
description = FALSE)

plot (f1inp)

### more information

finp <- nparLD(distance ~ age + gender, data = mydata, subject "individual",
description = TRUE)

plot(finp)

3.Code used for exploring the data set.

coplot(distance ~ agelindividual, type="b", data=mydata) ###points and lines

par (mfrow=c(2,2))
plotmeans(distance ~ individual, main="Heterogeneity across individuals", data=mydata

### plotmeans draws a 95} confidence interval around the means
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plotmeans(distance ~ age, main="Heterogeneity across age", data=mydata)

plotmeans(distance ~ gender, main="Heterogeneity across gender", data=mydata)

4.Code used for analyzing the data set (gee).

mydata_order<- order(as.integer (mydata$individual))
mydatal <- mydata[mydata_order,]
mydatal

fit.geel <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,
corstr="independence", data=mydatal)

summary (fit.geel)

>summary (fit.geel)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Identity
Variance to Mean Relation: Gaussian

Correlation Structure: Independent

Call:
gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydatal, family = gaussian, corstr = "independence")

Summary of Residuals:

Min 1Q Median 3Q Max
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-5.61566250 -1.3218750 -0.1681818 1.3299006 5.2468750

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 16.3406250 .4162242 11.538163 1.17148092 13.9486906

(I

age 0.7843750 0.1261673 6.216945 0.09834755 7.9755416
gender 1.0321023 2.2187969 0.465163 1.37778506 0.7491025
age:gender -0.3048295 0.1976661 -1.542143 0.11686730 -2.6083390

Estimated Scale Parameter: 5.093818

Number of Iterations: 1

Working Correlation
[,11 [,2] [,3] [,4]
[1,] 1 0 0 0

[2,] 0 1 0 0
(3,] 0 0 1 0
[4,] 0 0 0 1

>

coef (summary (fit.geel))

HiH## get the P values using a normal approximation for the distribution of z

> 2 * pnorm(abs(coef (summary(fit.geel)) [,5]), lower.tail = FALSE)
(Intercept) age gender  age:gender

3.204341e-44 1.517141e-15 4.537954e-01 9.098279e-03

fit.gee2 <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,
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corstr="exchangeable", data=mydatal)

summary (fit.gee2)

> summary(fit.gee2)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Identity
Variance to Mean Relation: Gaussian

Correlation Structure: Exchangeable

Call:

gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydatal, family = gaussian, corstr = "exchangeable")

Summary of Residuals:
Min 1Q Median 3Q Max
-5.6156250 -1.3218750 -0.1681818 1.3299006 5.2468750

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) 16.3406250 0.98813100 16.5369015 1.17148092 13.9486906
age 0.7843750 0.07879034 9.9552182 0.09834755 7.9755416
gender 1.0321023 1.54810375 0.6666881 1.37778506 0.7491025
age:gender -0.3048295 0.12344073 -2.4694405 0.11686730 -2.6083390

Estimated Scale Parameter: 5.093818
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Number of Iterations: 1

Working Correlation

[,1] [,2] (,3] [,4]
[1,] 1.0000000 0.6100109 0.6100109 0.6100109
[2,] 0.6100109 1.0000000 0.6100109 0.6100109
[3,] 0.6100109 0.6100109 1.0000000 0.6100109
[4,] 0.6100109 0.6100109 0.6100109 1.0000000

>

coef (summary(fit.gee2))

> 2 * pnorm(abs(coef (summary(fit.gee2)) [,5]), lower.tail = FALSE)
(Intercept) age gender  age:gender

3.204341e-44 1.517141e-15 4.537954e-01 9.098279e-03

fit.gee3 <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,
corstr="AR-M", data=mydatal)

summary (fit.gee3)

> summary(fit.gee3)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Identity
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Variance to Mean Relation: Gaussian

Correlation Structure: AR-M , M =1

Call:
gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydatal, family = gaussian, corstr = "AR-M")

Summary of Residuals:
Min 1Q Median 3Q Max
-5.7502655 -1.3670055 -0.1914044 1.2205495 5.1719079

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) 16.5946122 1.3530104 12.2649556  1.2788086 12.9766190
age 0.7694567 0.1166041 6.5988813  0.1049699 7.3302593
gender 0.7266739 2.1197599 0.3428095 1.4968683 0.4854628
age:gender -0.2856919 0.1826835 -1.5638623 0.1223804 -2.3344571

Estimated Scale Parameter: 5.099523

Number of Iterations: 3

Working Correlation

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.6135308 0.3764201 0.2309453
[2,] 0.6135308 1.0000000 0.6135308 0.3764201
[3,] 0.3764201 0.6135308 1.0000000 0.6135308
[4,] 0.2309453 0.3764201 0.6135308 1.0000000

>

coef (summary (fit.gee3))
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> 2 x pnorm(abs(coef (summary(fit.gee3))[,5]), lower.tail = FALSE)
(Intercept) age gender  age:gender

1.660501e-38 2.297079e-13 6.273481e-01 1.957180e-02

fit.geed <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,
corstr="unstructured", data=mydatal)

summary (fit.gee4)

> summary(fit.geed)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Identity
Variance to Mean Relation: Gaussian

Correlation Structure: Unstructured

Call:
gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydatal, family = gaussian, corstr = "unstructured")

Summary of Residuals:
Min 1Q Median 3Q Max
-5.6285551 -1.3572403 -0.1781935 1.3128169 5.2189881

Coefficients:
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Estimate Naive S.E. Naive z
(Intercept) 16.3236414 1.00582208 16.2291539
age 0.7881142 0.08500322 9.2715804
gender 1.0736105 1.57582036 0.6813026
age:gender -0.3100200 0.13317445 -2.3279243

Estimated Scale Parameter: 5.094256

Number of Iterations: 3

Working Correlation

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.5009582 0.7363481 0.5148767
[2,] 0.5009582 1.0000000 0.5552694 0.6208238
[3,] 0.7363481 0.5552694 1.0000000 0.7788356
[4,] 0.5148767 0.6208238 0.7788356 1.0000000

>

coef (summary (fit.gee4))

> 2 * pnorm(abs(coef (summary(fit.geed)) [,5]),

Robust S.E. Robust z
1.1701159 13.9504481
0.0982681 8.0200410
1.3762246 0.7801128
0.1172035 -2.6451442

lower.tail = FALSE)

(Intercept) age gender  age:gender

3.126351e-44 1.057099e-15 4.353245e-01 8.165610e-03
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