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Abstract

Mari Barazian

COVARIANCE ESTIMATORS FOR GENERALIZED ESTIMATING EQUATIONS

IN LONGITUDINAL ANALYSIS WITH SMALL SAMPLES

June, 2017

The Generalized Estimating Equations (GEE) statistical method is a simple and

efficient approach to estimate the regression coefficient of a marginal model for

correlated responses when the associational structure is regarded as a “nuisance”. Its

most common use is to fit marginal models for longitudinal data in several fields such as

biomedical studies and social sciences. The most attractive feature of the GEE

methodology is that consistent estimates for marginal regression coefficients are

obtained even if the correlation structure is misspecified. However, the technique

requires that the sample size is large. The variance-covariance matrix of the regression

parameter coefficients is often estimated by the so-called “sandwich” variance estimator,

which is robust and performs well when the size of the sample is large. However, when

the sample size is small, the “sandwich” estimator does not have a good performance.

Specifically, in that case, bias and inefficiency appear. The main goal is to find ways in

order to decrease the bias and improve the efficiency. For this reason, some recently

developped modified variance estimators have been proposed. The current GEE

methodology focuses on the modeling of the working correlation matrix assuming a

known variance function. However, Wang, Y.-G., Lin, X. and Zhu, M. (2005) showed

that the correct choice of the correlation structure may not necessarily improve the

estimation efficiency for the regression parameters if the variance function is

misspecified.
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The purpose of this thesis is to provide a review on recent developments of

modified variance estimators. One of the most attractive parts is the comparison of

their small-sample performance and the presentation of the most important results

which were obtained through simulations and one real data example. Simulation shows

that the modified estimators do well in reducing bias and increasing efficiency compared

to the GEE estimates. Hypothesis testing that is used is based on Wald tests and

t-tests on different variance estimators. Finally, the “geesmv” R package which

incorporates all of those variance estimators is used for programming purposes.
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Η Στατιστική μέθοδος των Γενικευμένων Εξισώσεων Εκτίμησης είναι μία απλή και

αποτελεσματική προσέγγιση ώστε να εκτιμήσουμε τον συντελεστή παλινδρόμησης ενός

περιθώριου μοντέλου όταν υπάρχουν συσχετίσεις στις μεταβλητές απόκρισης και η δομή

της συσχέτισης θεωρείται ως παράμετρος ενόχλησης. Η πιο συνηθισμένη χρήση τους

έγκειται στην προσαρμογή περιθώριων μοντέλων σε βιοϊατρικές μελέτες και κοινωνικές

επιστήμες όταν τα δεδομένα μας αφορούν επαναλαμβανόμενες μετρήσεις στο πέρασμα του

χρόνου. Το πιο ελκυστικό στοιχείο των Γενικευμένων Εξισώσεων Εκτίμησης είναι το

γεγονός ότι ακόμα και στην περίπτωση όπου η δομή της συσχέτισης δεν είναι επακριβώς

προσδιορισμένη, μπορούμε να λάβουμε συνεπείς εκτιμητές των συντελεστών παλινδρόμησης

στα περιθώρια μοντέλα. Ωστόσο, κάτι τέτοιο προϋποθέτει την ύπαρξη μεγάλου μεγέθους

δείγματος. Ο πίνακας διακύμανσης-συνδιακύμανσης των συντελεστών παλινδρόμησης

εκτιμάται συνήθως από τον επονομαζόμενο ‘σάντουϊτς’ εκτιμητή διακύμανσης, ο οποίος

όμως δεν αποφέρει καλή συμπεριφορά στην περίπτωση του μικρού μεγέθους δείγματος.

Στην περίπτωση αυτή, γίνεται αισθητή η εμφάνιση μεροληψίας και αναποτελεσματικότητας.

Για τον λόγο αυτό έχουν προταθεί αρκετοί διορθωτικοί εκτιμητές διακύμανσης προκειμένου

να επιτευχθεί μείωση της μεροληψίας και βελτίωση της αποτελεσματικότητας. Η παρούσα

μεθοδολογία των Γενικευμένων Εξισώσεων Εκτίμησης εστιάζει στη μοντελοποίηση του

πίνακα συσχέτισης υπό την υπόθεση ύπαρξης γνωστής συνάρτησης διακύμασης. Ωστόσο,

οι Wang, Lin, Zhu (2005) έδειξαν ότι η σωστή επιλογή της δομής συσχέτισης πιθανόν να

μη βελτιώσει την αποτελεσματικότητα της εκτίμησης για τις παραμέτρους παλινδρόμησης

εάν η συνάρτηση διακύμανσης δεν είναι σωστά προσδιορισμένη.
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Ο σκοπός αυτής της Διπλωματικής εργασίας είναι να παρουσιάσει την πιο πρόσφατη

έρευνα και τις τελευταίες πρακτικές ανάπτυξης σχετικά με τους διορθωτικούς εκτιμητές

διακύμανσης και να συγκρίνει τη συμπεριφορά τους πάνω σε μικρά δείγματα τόσο σε

θεωρητικό υπόβαθρο όσο και σε πρακτικό μέσω της προσομοίωσης αλλά και ενός

παραδείγματος με πραγματικά δεδομένα. Η προσομοίωση υποδεικνύει ότι οι διορθωτικοί

εκτιμητές διακύμανσης συμπεριφέρονται αρκετά καλά στη μείωση της μεροληψίας και στην

αύξηση της αποτελεσματικότητας συγκρινόμενοι με τους εκτιμητές των Γενικευμένων

Εξισώσεων. Οι έλεγχοι υποθέσεων που διεξάγονται στηρίζονται στους Wald tests και

t-tests για κάθε εκτιμητή διακύμανσης και στο κατάλληλο μέγεθος του δείγματος ώστε να

περιοριστεί το σφάλμα τύπου I. Τέλος, το πακέτο που χρησιμοποιείται για την ανάπτυξη

του κατάλληλου κώδικα είναι το “geesmv” της γλώσσας R, το οποίο περιέχει

ενσωματωμένους όλους τους διορθωτικούς εκτιμητές διακύμανσης με τους οποίους

ασχολούμαστε.
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1 Introduction

When measurements are taken from the same subject more than one time, the

responses are no longer independent. Longitudinal studies are characterized by repeated

measurements of the same individuals allowing the study of change over time. In these

studies it is reasonable to assume that the subjects are independent, but the repeated

measurements taken on each subject may not be uncorrelated. The purpose of

longitudinal data analysis is to model the relationship of the repeated measurements of

each subject to the associated covariates. Moreover, the primary goal of a longitudinal

study is to specify the change in response through time and the factors that influence

this change. With repeated measures on individuals one can capture within-individual

change, as G. Fitzmaurice et al. (2004) mentioned. An exceptional feature of

longitudinal data is that they are clustered. The clusters are composed of the repeated

measurements obtained from a single individual at different occasions. Observations

within a cluster will typically exhibit positive correlation and this correlation must be

accounted for in the analysis.

There are three types of models for longitudinal data analysis: (1) transition or

fully conditional models (Korn and Whittemore, 1979, Rosner, 1984 and Zeger and

Qaqish, 1988 etc.), (2) random effects models (Rao, 1965, Laird and Ware, 1982 and

Stiratelli, Laird and Ware, 1984 etc.) and (3) marginal models (Liang and Zeger, 1986,

Zeger and Liang, 1986 and Prentice and Zhao, 1991 etc.). Transition models are used to

specify the conditional distribution of each response given the past responses. Random

effects models describe the natural heterogeneity among subjects. Marginal models are

used to characterize the marginal expected value of a subject’s response as a function of

the subject’s covariates. Diggle, Liang and Zeger (1994) discussed these models in detail.

There are several approaches in order to analyze repeated measurements, with

the mixed-effects models and the Generalized Estimating Equations (GEE) to be the

most popularly applied. The distinct condition of mixed-effects models is that some

subset of the regression parameters typically vary from one individual to another

accounting for natural forms of heterogeneity in the population. This means that the

individuals in the population have their own subject-specific mean response feature over
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time. Moreover, the mean response is modeled as a combination of population

characteristics, that are assumed to be shared by all individuals and are called fixed

effects and subject-specific effects that are unique to a particular individual and are

called random effects. The term mixed is used to demonstrate that the model contains

both fixed and random effects.

The GEE method is developed from the theory of Generalized Linear Models

(GLM) by Nelder and Wedderburn (1972). GEE is used to estimate the regression

parameters in marginal models of longitudinal data in which the link function and the

variance function take the forms of those in GLM.

Generalized Linear Models (GLM) are widely used to estimate regression

coefficients of a linear model. This class of models can be applied to both continuous

and discrete data and introduce a likelihood-based method in which the distribution of

the response variable is a member of the exponential family. The main feature that

characterizes this methodology is the existance of one random component and one

systematic component called linear predictor and the link between those two. The

monotone link function which relates the expected responses and the linear predictor

may not be linear.

Another method that is closely related to the GLM is the quasi-likelihood

method (QL) proposed by Wedderburn (1974) and explored by McCullagh and Nelder

(1989). The QL method requires only the first two moments, mean and variance, for

estimating the regression parameters when the distribution may not be from an

exponential family. The main thing that differentiates the QL method of the GLM

method is that the former does not have a likelihood function as it does not assume a

full distributional specification, so the inference about the parameters relies solely on

limit theory results. However, both of these methods assume independence of the

observations.

Despite the fact that these methods are really useful to a statistician, there are

some important limitations to their use. The lack of independence among the repeated

measures of the same individual or the existence of clustered data make the application

of the GLM or the QL method inappropriate. Clustered data are data whose

observations come into clusters showing that there are subjects with common

2
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characteristics. Moreover, clustered data arise when each individual is measured

repeatedly through time so we expect the responses within a cluster to be correlated.

However, one could use maximum likelihood methods that typically take into

account the dependencies within a cluster but these methods have two important

disadvantages; they are computationally difficult and they are sensitive to the

misspecification of the correlation structure.

A straightforward application of the generalized linear models to longitudinal

data is not correct, as mentioned before, due to the lack of independence among the

repeated measurements of the same individual. The approach for extending generalized

linear models to longitudinal data leads to a class of regression models known as

marginal models. The name of these models indicates that the model for the mean

response depends only on the covariates of interest and not on any random effects or

previous responses. An asset of marginal models is that they require only a regression

model for the mean response and not any distributional assumption for the

observations. The only assumptions that marginal models rely on are those about the

mean response. The avoidance of distributional assumptions leads to a method of

estimation known as Generalized Estimating Equations (GEE).

The GEE technique is asymptotic. Thus, in the case of small sample sizes, GEE

may result in biased estimates. Notice that the GEE function is an extension of the

quasi-likelihood which is the true likelihood when the distribution is from an

exponential family. This motivates us to use the bias-correction technique in maximum

likelihood estimation to reduce the bias. Under general conditions, maximum likelihood

(ML) estimators are consistent, but they are not unbiased generally.

The GEE method that was proposed by Liang and Zeger (1986) and Zeger and

Liang (1986) is a synthesis of the GLM and the QL method. On one hand, it requires

correct specification of the model for the response mean and on the other hand it allows

us to adopt a working assumption for the correlation structure. As in the GLM

procedure, the mean is also described through a link function that is the connection

between the response variable and the linear predictor. The GEE methodology has

three main advantages that attract a statistician’s attention; (i) When the inference is

intended to be population-based, GEE treats the variance-covariance matrix of the

3
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responses as a “nuisance” parameter. (ii) The regression parameter estimates are

consistent and asymptotically normal even if the correlation structure of the responses

is misspecified and (iii) GEE is computationally simple enough, as it relaxes the

distribution assumption; it is necessary to specify correctly the marginal mean and

variance as well as the link function between the mean and the covariates of interest.

As it is well known, the variance estimators of parameters of interest are really

useful in hypothesis testing. In order to obtain valid inference, it is actually important

to have accurate estimates. As it was mentioned before, the GEE methodology with the

classic “sandwich” variance estimator does not have a good performance when the

sample size is small. As a result, considerable bias appears (Gunsolley JC, Getchell C,

Chinchilli VM., 1995) which in turn leads to inflated type I errors and smaller coverage

rates of the resulting confidence intervals (Wang M, Long Q., 2011). This specific

feature was the main factor for developing several modifications of variance-covariance

estimators in order to improve the small-sample performance.

This Master thesis is organised as follows: After the section of Introduction we

continue to the Section 2 in which we provide the GEE theory and methodology as well

as we introduce the notations of all nine variance estimators of GEE with their

theoretical and practical comparisons. In Section 3, the simulation procedure follows in

order to compare the performance of different variance estimators and analyze their

performance in controlling the bias and the inflated type I error. The R package

“geesmv” is proved really helpful for our simulation study. Moreover, our simulation

results are getting more understandable through a real data example in Section 4. Last

but not least, in Section 5, we give the conclusion of this thesis with a brief discussion

and some future research.

4
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2 Generalized Estimating Equations Theory and Modified Vari-

ance Estimators With Small Samples

2.1 Background Study

2.1.1 Basic Aspects of Longitudinal Analysis

The fact that measurements of the same individuals are taken more than once

through time defines longitudinal studies. The result is the direct study of change,

while the goal is to characterize the change in response over time and the factors which

influence that change. With repeated measurements on different individuals one can

capture within-individual change, providing not only comparisons among different

individuals but also information about how individuals change during the corresponding

period. Another feature that differentiates longitudinal data from other type data is

that they are clustered. The clusters are composed of the repeated measurements taken

from the same individuals at different occasions. Additionally, observations of the same

cluster will possibly exhibit positive correlation.

It gets obvious from the above that longitudinal data have to deal with two types

of dependence: (1) homogeneity of the responses of the same individual and (2)

heterogeneity across different individuals. In a repeated measurements design the

response variable can be in the form of count data, such as the number of children laid;

binary, such as the gender of the people (male or female); categorical, such as the type

of damage to a machine, which can be aggregated into counts; lastly, it can be in the

form of continuous data, such as the growth of a child’s height. These responses may

have come from a study where the subjects have undergone some treatment.

Randomisation is required to allocate subjects to treatment groups so that bias is

avoided. Lindsey (1993, p.9) notes that randomisation allows for statements of

causality, since which treatment a subject receives is not influenced by the response that

the subject gives. It also minimises the effects of inter-response variability by

distributing it randomly over treatments, thereby ensuring homogeneity of variability.

In order to attribute causality, the relationship between the cause and the effect needs

to be strong, and the relationship should be consistent in different populations and

under different circumstances. In addition, the cause needs to lead to a single effect
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(specificity) and the cause must precede the effect in time (temporality).

2.1.2 Models for Repeated Measurements

There is a great variety of different types of models which can be used in order to

analyze repeated measurements. Linear mixed effects models are the most commonly

used.

2.1.2.1 Random Effects Models

In random effects modeling one or more variables are declared as random factors.

If a model also contains fixed factors, then the model is referred to as a mixed model.

Random factors have a distribution assumed for the different levels while the values for

the levels of a fixed factor are fixed, known values which are chosen at the beginning of

the experiment and the effects of each level on the response are estimated as model

coefficients. When a factor is declared to be a random factor, then inferences can be

made on the population from which the levels of the random factor have been chosen.

Correlation can also be incorporated into the model, since observations that share the

same level of the random effect are modeled as correlated. A great variety of

bibliography related to random effects models is available (Crowder & Hand, 1990;

Davis, 2002; Fitzmaurice et al., 2004)

In a repeated measures ANOVA, a random effect for the individuals of the study

can be included in the model. As a result, positive correlation is induced between

repeated measurements through the covariance matrix of the random effects while

concerning the mean structure, random effects can be thought of as randomly varying

intercepts which account for all unmeasured factors (Fitzmaurice et al., 2004).

The repeated measures ANOVA model can be written as:

yij = x′ijβ + bi + eij

where bi is a random individual-specific effect and eij is a within-individual

measurement of error (Crowder & Hand, 1990; Fitzmaurice et al., 2004).
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There are two standard assumptions when using ANOVA for repeated measures;

(1) The observations on different subjects at each of the repeated measurement times

are independent and (2) these observations are distributed as multivariate normal.

Therefore, the bi’s are assumed to be normally distributed with mean zero and

var(bi) = σ2
b as well as the eij are assumed to be normally distributed with mean zero

and var(eij) = σ2
e . Thus, repeated measures ANOVA has two different sources of

variability; on one hand, the subject variability (σ2
b ) and on the other hand the within

subject variability (σ2
e). In addition, the bi’s of the different individuals are uncorrelated

and the errors eij’s are uncorrelated for different time points and for different

individuals. Lastly, it is assumed that all the correlations in the outcome variable

between repeated measurements are equal and variances of the outcome variable are the

same at each of the repeated measurements (which is known as sphericity). An example

of a covariance matrix that satisfies the sphericity condition is the compound symmetric

(CS) covariance matrix (Hand & Crowder, 1996, p. 41) :



σ2
b + σ2

e σ2
b σ2

b . . . σ2
b

σ2
b σ2

b + σ2
e σ2

b . . . σ2
b

σ2
b σ2

b σ2
b + σ2

e . . . σ2
b

...
...

...
. . .

...

σ2
b σ2

b σ2
b . . . σ2

b + σ2
e


The mean response can be written as follows since the means of bi’s and eij’s are equal

to zero:

E(yij) = µij = x′ijβ

Fitzmaurice et al. (2004, p. 14) note that regression models have a wide range of

uses. Regression models include linear regression, linear logistic regression and Poisson

or log-linear regression models. Linearity means that all of these models for the mean or

a transformation of the mean are linear in the regression parameters. The regression

parameters in the model express how the covariates are related to the mean of the

response variable. The covariates can be quantitative or categorical (such as gender or

treatment group). Models which only include categorical covariates are actually
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ANOVA models.

2.1.2.2 Linear Mixed Effects Models

Linear Mixed Effects Models represent one of the most widely used methods of

including the covariance matrix in the statistical analysis. Mixed effects models are

those where the mean is modeled through both random and fixed effects.

Fixed effects are those factors in a model for which the designer of the experiment

had deliberately chosen certain levels and which are the only levels of interest, rather

than randomly sampling levels from an infinite population of possible levels (Vittinghoff

et al., 2005). When a researcher chooses individuals for a study in such a way that both

males and females are included, then gender can be considered as a fixed effect.

When the researcher does not explicitly choose the levels of a factor, but rather

the levels are a sample of the possible levels available, then this is known as a random

effect (Fitzmaurice et al., 2004). In the Potthoff and Roy dataset the children included

in the study are an example of a random effect, as they were randomly selected from a

larger population of children. Including individual specific random effects into a model

can be used to account for correlation among repeated measurements (Fitzmaurice et

al., 2004; Vittinghoff et al., 2005).

Linear mixed effects models are a special case of mixed effects models in which

both the fixed and random effects occur linearly in the model function. The most

common formulation of the model is that of Laird and Ware (1982):

yi = Xiβ + Zibi + εi for i = 1, 2, ..., K

and

bi ∼ N(0,Σ)

εi ∼ N(0,σ2I)

where yi (ni × 1) are independent and normally distributed, β is the p-dimensional

vector of fixed effects, bi is the q-dimensional vector of random effects, Xi (ni × p) and

Zi (ni × q) are known fixed effects and random effects regressor matrices respectively,
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and εi is the ni-dimensional within-individual error vector. It is assumed that bi and εi

are independent for different individuals and that they are independent of each other for

the same individual. A structure needs to be chosen for Σ, the covariance matrix of bi.

The consequences of these structural choices will be the main consideration of the

following chapters.

However, during this specific research, two main thoughts appeared. The first

one is the consequences which may appear when using an over-simplified model, namely

the ordinary linear regression model which assumes independence of repeated

measurements, to analyze repeated measures data. The second thought stands for

wondering if an appropriate model is chosen, what the consequences are of using an

incorrect parameterisation of the covariance structure for the estimates of the fixed

effects and inferences about these estimates.

2.2 Hierarchical versus Marginal Modeling Approaches

The marginal modeling approach and the hierarchical modeling approach both

assume correlation into the model. The former assumes a model which holds averaged

over all the clusters (also referred to as population averaged). Thus, the coefficients can

be interpreted as the average change in the response for a unit change in the predictor

over the entire population. The second is the hierarchical or conditional modeling

approach which assumes a model specific to each cluster (also referred to as subject

specific). Coefficients can then be interpreted as the change in the response in each

cluster in the population for a unit change in the predictor, and the marginal

information can be obtained by averaging over all the clusters.

In the analysis that follows we highlight the main parts of hierarchical modeling

as well as marginal modeling. According to Verbeke and Molenberghs (2000),

hierarchical modeling implies a two-stage process; In the first stage, which can be

named as the calculation stage, it is assumed that the following linear regression

relationship holds:

yi = Ziβi + εi
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where Zi (ni × q) is a matrix of known covariates, βi (q × 1) is a vector of unknown

subject-specific regression coefficients and εi is the vector of residuals of length ni. This

regression equation models how the ith subject’s response evolves over time. All βi

estimates for the observed yi for each subject are obtained separately.

In the second stage, which can be interpreted as the analysis stage, a multivariate

regression model for the subject-specific regression coefficients, βi, is assumed to be:

βi = Kiβ + bi

where Ki is a matrix of known covariates, β (p× 1) is a vector of unknown regression

coefficients and bi is a vector of independent elements of length q. Consequently, we

obtain:

yi = Ziβi + εi

= Zi(Kiβ + bi) + εi

= ZiKiβ + Zibi + εi

= Xiβ + Zibi + εi

where Xi is the fixed effects regressor matrix. The estimates β̂ are used to provide

inferences for β.

However, this two-stage process is not that innocent; Firstly, information is lost

in summarising the yi by the estimated vector of subject-specific regression coefficients,

β̂. Secondly, there is the problem that the covariance matrix of β̂ is highly dependent

on the number of measurements available for each subject and also on when the

measurements were taken.

Marginal models are those that are most commonly used in order to make

inference about population means. Marginal models for longitudinal data model the

mean response and the within-subject association among repeated responses obtained

separately (Davis, 2002; Fitzmaurice et al., 2004). Marginal modeling approach assumes

that the marginal expectation (E(yij) = µij) can be related to the covariates through a

known link function (g):
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g(µij) = x′ijβ

Moreover, the conditional variance of each yij given the covariates, depends on the

mean in the following way:

var(yij) = φv(µij)

where v(µij) is a known variance function of the mean and φ is a scale parameter

(Davis, 2002; Fitzmaurice et al., 2004).

There is a great controversy in bibliography about which modeling approach is

more preferable. Lee and Nelder (2004) argue that the conditional modeling approach is

preferable to the marginal modeling approach since both marginal inferences and

conditional inferences can be obtained, i.e. one can have both E(yi) = Xiβ and

E(yi|bi) = Xiβ + Zibi . Since the expected value for the mean of the random effects is

constrained to equal zero, this means that the fixed effects estimates of a conditional

model have the same meaning as those of the marginal model. The authors show that if

the individuals in a study have significant random treatment effects (e.g. random time

effects), these will be confounded with the fixed treatment effects in a marginal model,

whereas for a conditional model these two different treatment effects will have separate

estimates. The marginal estimates for the fixed effects are then only useful if there is no

interaction effect between the subject and the treatment and this can only be checked

by means of a conditional model. In addition, the authors conclude that conditional

models allow for the estimation of two different types of error: random error and

subject-specific error, which is not possible through the marginal modeling approach.
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2.3 Generalized Estimating Equations

2.3.1 Introduction to Generalized Estimating Equations

In this section we outline the main idea of the GEE method in the context of

repeated measurements. The interest in analyzing longitudinal data is to describe the

dependence of the outcome on predictor variables (marginal expectation of the outcome

Y as a function of covariates X, i.e. E(Y |X)). Repeated measurements tend to be

correlated since they are made on the same subject. For example, two measurements

from the same subject are likely to be more correlated than two measurements from

different subjects. Since most statistical tests assume independence of observations, it is

crucial to take the within-subject correlation into account to obtain correct statistical

analysis. If we do not take the correlation into account, it can lead to a wrong test

statistic and inference, for example standard errors will likely be too small. (Burton et

al., 1998 , Zeger & Liang, 1986).

There are many techniques for analysis when the outcome variable is

approximately normally distributed (e.g. fitting growth curves for each subject using

repeated measurements). Difficulty in analysis comes from the lack of multivariate joint

distribution of the outcome variable, hence likelihood methods are not available or are

difficult to compute (Liang & Zeger 1986).

Linear models for normally distributed data have been expanded to non-normal

data using generalized estimation methods and quasi-likelihood when there is a single

observation for each subject (no repeated measurements). Quasi-likelihood approach

does not assume distribution, it only specifies a linear function between marginal

expectation of the outcome variable and covariates and assumes that variance (of the

outcome variable) is a known function of its expectation (Zeger & Liang 1986).

As it was mentioned above Generalized Estimating Equations is a general

statistical method to fit marginal models for correlated or clustered responses and it

uses a robust sandwich estimator to estimate the variance-covariance matrix of the

regression coefficient estimates. We begin by introducing some useful notation. We

assume that K subjects are measured repeatedly over time. Let Yij denote the response

variable for the ith subject on the jth measurement, given longitudinal data consisting of
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K subjects, i = 1, 2, ..., K and j = 1, 2, ..., ni. The response variable could be continuous,

binary or a count. The nature of the response variable does have really important and

useful implications for model specification; however the notation does not distinguish

between the different types of responses. Also, let Xij be a p× 1 covariates vector.

Yi = (Yi1, Yi2, ..., Yini)
′ denotes the response vector with the mean vector noted by

µi = (µi1, µi2, ..., µini)
′ where µij is the corresponding jth mean for subject i. Although

there exists within-subject correlation, the observations across subjects are assumed to

be independent. The marginal model specifying an association between µij and the

covariates of interest Xij is given by

g(µij) = X′ijβ (1)

with g as a known link function and β an unknown p× 1 vector of regression coefficients.

The conditional variance of Yij given Xij is V ar(Yij|Xij) = v(µij)ϕ with v as a known

variance function of µij and ϕ a scale parameter which may need to be estimated.

For the case of univariate QL, the estimates β̂ for a GLM are solutions of

likelihood equations:

U(β) =
K∑
i=1

(
∂µi
∂β

)′
(yi − µi)
v(µi)

= 0

for variance function v(µ).

The estimators β̂ are asymptotically normal with model-based covariance matrix

approximated by

V =

[ K∑
i=1

(
∂µi
∂β

)′
[
v(µi)

]−1∂µi
∂β

]−1
With quasi-likelihood approach, we use our own variance function (e.g., for count data,

v(µ) = cµ with unknown constant c estimated from data), typically to permit

overdispersion.

When we misspecify the variance function, the actual asymptotic covariance

matrix of β̂ is
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var(β̂) ≈ V

[ K∑
i=1

(
∂µi
∂β

)′
var(yi)[
v(µi)

]2 (
∂µi
∂β

)

]
V

In practice, true var(yi) is unknown. Thus, one can estimate var(β̂) by sample analog

(sandwich estimator ), replacing µi by µ̂i and var(yi) by (yi − µ̂i)2.

For the multivariate QL (GEE),

var(β̂) ≈ K

[ K∑
i=1

D′iV
−1
i Di

]−1
M

[ K∑
i=1

D′iV
−1
i Di

]−1

with

M =

[ K∑
i=1

D′iV
−1
i var(yi)V

−1
i Di

]
where

Di =
∂µi

∂β
and Vi the working covariance matrix.

To obtain estimated covariance matrix, we replace the parameters by their estimates

and we replace var(yi) by (yi − µi)(yi − µi)
′ to get an empirical sandwich covariance

matrix that yields more robust SE values.

To estimate β, Liang and Zeger (1986) proposed solving the estimating equations

U(β) =
K∑
i=1

(
∂µi

∂β
)′V−1i (Yi − µi) = 0 (2)

where Vi is the variance-covariance matrix for Yi, noted by Vi = ϕA
1
2
i Ri(a)A

1
2
i . Let

Ai = Diag(v(µi1), ..., v(µini)) , while the working correlation/association structure

Ri(a) describes the correlation pattern of observations within-subject with a as a vector

of association parameters specifying the correlation structure. Several types of

correlation structure can be used depending on the occasion, including independent,

exchangeable and autoregressive structure. As Ming Wang et al (2015) mention, the

estimation of a is based on an iterative fitting process using the Pearson residual

eij =
yij−µ̂ij√
v(µ̂ij)

. Additionally, the scale parameter ϕ is estimated by
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ϕ̂ = 1
N−p

∑K
i=1

∑ni
j=1 e

2
ij with the total number of observations N =

∑K
i=1 ni .

The GEE method yields asymptotically consistent β̂ even when the correlation

structure is misspesified. Under mild regularity conditions (the parameter space is an

open set and the GEE function U(β) is continuously differentiable) and given the true

value of β as βt , β is asymptotically normally distributed with a mean its true value

and a covariance matrix estimated based on the “sandwich” estimator by

VLZ =

(
K∑
i=1

(
∂µi

∂β
)′V−1i

∂µi

∂β

)−1
MLZ

(
K∑
i=1

(
∂µi

∂β
)′V−1i

∂µi

∂β

)−1
(3)

with

MLZ =
K∑
i=1

(
∂µi

∂β
)′V −1i Cov(Yi)V

−1
i

∂µi

∂β
(4)

where Cov(Yi) = r̂ir̂i
′ with r̂i = Yi − µ̂i an estimator of the variance-covariance matrix

of Yi and a, β, ϕ can be replaced with their consistent estimates. The specification of

the covariance matrix is not always necessary to be correct and for this reason we

usually refer to Vi as “working” covariance matrix. The GEE solution will be consistent

as long as E(Yi − µi) = 0 , which indicates the importance of the correct specification of

the mean. Additionally, this “sandwich” estimator is robust and consistent even if the

correlation structure is misspecified, a fact that makes its use more appropriate. A

consistent estimator for the covariance matrix of β̂ is given by
(∑K

i=1(
∂µi
∂β

)′V−1i
∂µi
∂β

)−1
which is also referred to as the model-based variance estimator.

Alternative estimators of the covariance matrix have been proposed by Paik

(1988) as well as by Mancl and DeRouen (2001) using Jackknife estimators for samples

with small sizes and by Pan (2001) under the assumption of a common correlation

matrix across the subjects.

Generalized Estimating Equations are based on quasi-likelihood method of

estimation. In addition to previously mentioned assumptions (expectation of outcome

variable to be a linear function of covariates and that variance is a known function of

the mean), one needs to specify the working correlation structure between the repeated

measurements for each subject. The general idea is to incorporate the correlation

structure between repeated measurements to get consistent estimators of coefficients
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and of their variances (Zeger & Liang 1986).

The next section will give the general idea of quasi-likelihood estimator of which

GEE is based on.

2.3.2 Quasi-likelihood estimator

This section is a short overview of quasi-likelihood used in GEE based on Zeger

& Liang 1986. Quasi-likelihood is a methodology for regression that requires the

specification of relationships between mean response and covariates and between mean

response and variance. Thus it does not assume a probability distribution as in the case

of full likelihood.

Let Yi be the response variable for each subject i = 1, . . . , K and Xi be p× 1

vector of covariates. Let β be p× 1 vector of regression parameters to be estimated.

Define µi = E(Yi|Xi) to be the conditional expectation of Yi and a function of

covariates and regression parameters, so that µi = h(X′iβ). The inverse of h is the link

function which relates the mean response to the linear predictor X′iβ. For

quasi-likelihood, variance of each Yi, denoted as ui, is a known function of the

expectation µi, so that ui = f(µi)φ. The scale parameter φ is treated as a nuisance

parameter. The quasi-likelihood estimator is the solution to the equations:

Sk(β) =
N∑
i=1

(
∂µi

∂βk
)u−1i (Yi − µi) = 0, for k = 1, 2, ..., p

Estimators of regression parameters, β̂, are obtained by iteratively reweighted the least

squares method.

2.3.3 Marginal Models

A standard GEE is known as a marginal model. Marginal models extend

generalized linear models to longitudinal data and are typically used when the inference

is population-based, rather than individual-based. The term “marginal” means that in

the model specification the expected value of the response variable Y , depends only on

covariates (fixed effects) and does not depend on subject specific random effects nor

directly on previous responses of the subject. Since the purpose is to describe the
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changes in population mean rather than changes within subjects, within-subject

correlation is regarded as a nuisance characteristic. Regression parameters and

within-subject correlation is modelled separately (Fitzmaurice et al. 2004).

Let’s introduce some notation for the repeated measurements. We have K

subjects who are measured repeatedly. Yij denotes the response variable for the ith

subject on the jth measurement occasion. A realisation of each Yij is observed at time

tij. The response variable can be continuous, binary, multinomial or a count. We

assume the data are unbalanced (the number of repeated measurements can be different

for subjects and/or they can be measured at different occasions) and that there are ni

repeated measurements for the ith subject.

The response variable is a ni × 1 vector

Yi = (Yi1, Yi2, ..., Yini)
′, i = 1, 2, ..., K

Yi are assumed to be independent, but observations within the subject are not assumed

to be independent. Associated with each response at a given time point j, there is a

p× 1 vector of covariates

Xij = (Xij1, Xij2, ..., Xijp)
′, i = 1, ..., K, j = 1, ..., ni

They can be either time-invariant or time-dependent. Time-invariant variable is fixed

within a subject at the same value irrespective of time point j, whereas time-dependent

variable is varying with time for each subject.

The GEE requires the following specifications for a marginal model:

(1) Conditional mean of Yij is related to covariates by a known link function,

g(µij) = nij = X′ijβ

where µij = E(Yij|Xij) is a conditional expectation (or mean) of the response variable

and β is a p× 1 vector of regression parameters.

(2) The conditional variance of each Yij may depend on the mean response, given

the effects of covariates, as

var(Yij) = φv(µij)
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where v(µij) is a known variance function of the mean and φ is a scale parameter that

may be known or may need to be estimated (Davis, 2002; Fitzmaurice et al., 2004).

When the response is a continuous variable, then variance of each Yij does not depend

on mean response and is var(Yij) = φv(µij) = φ. Note that this assumes homogeneity of

variance over time, which is often too strong of an assumption.

(3) Correlation among repeated measurements is a function of the means, µij ,

and a set of parameters, α, which characterize the within-subject correlation and need

to be estimated. The “working” covariance matrix for Yi is given by

Vi = A
1
2
i Ri(α)A

1
2
i /φ

Correlation matrices Ri(α) can be different for subjects, however, it is fully specified by

α, which is the same for all subjects. Ai is a ni × ni diagonal matrix with g(µij) on the

diagonal. “Working” covariance means that we do not know the true correlation

structure between repeated measurements and are not assuming we are specifying it

correctly. We would like to get consistent estimates of regression parameters regardless

of the chosen structure (Fitzmaurice et al. 2004, Zeger & Liang 1986).

2.3.4 Working Correlation Structures

In this section we present five basic working correlation structures;

Independence

Independence is the most basic structure where each observation within a

subject is uncorrelated with another observation.

Cor(Yij, Yik) =

 1 j = k

0 otherwise
,

for instance, a 4× 4 correlation matrix with independence structure is the

following

RIN =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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Exchangeable

In exchangeable working correlation structure, responses are assumed to be

equally correlated within an individual.

Cor(Yij, Yik) =

 1 j = k

α otherwise
,

REX =


1 α α α

α 1 α α

α α 1 α

α α α 1


Autoregressive AR-1

Two observations closer in time are more correlated than two observations more

further in time. This structure is often used in longitudinal designs. Note that ni in this

example is 4.

Cor(Yij, Yi,j+t) = αt, t = 0, ..., ni − j ,

RAR−1 =


1 α α2 α3

α 1 α α2

α2 α 1 α

α3 α2 α 1


Toeplitz

Correlation is the same for any two observations that have the same distance in

time. Note that ni in this example is 4.

Cor(Yij, Yi,j+t) =

 1 t = 0

αt t = 1, ..., ni − j
,

RTOEP =


1 α1 α2 α3

α1 1 α1 α2

α2 α1 1 α1

α3 α2 α1 1


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Unstructured

There is no assumption made about any two observations within a subject, so

correlation can take a value between -1 and 1. This type of correlation is the most

flexible one, but the number of parameters can become too high very quickly.

Cor(Yij, Yi,k) =

 1 j = k

αjk otherwise
,

RUN =


1 α12 α13 α14

α12 1 α23 α24

α13 α23 1 α34

α14 α24 α34 1


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2.4 Modified Variance Estimators of Generalized Estimating
Equations with small samples

This chapter outlines a main problem that arises when the sample size is small.

Due to the fact that the fitted value µ̂i tends to be closer to Yi than the true value µi ,

the term r̂ir̂i
′ in VLZ is biased for estimating E(eie

′
i) and the bias tends to be larger

when the sample size is much smaller. Additionally, the hypothesis testing tends to be

too liberal and the resulting confidence interval is narrow. We present the eight

variance modifications as they were proposed by Wang et. al (2015).

The first modified variance estimator is denoted by VMK and provides a

degrees-of-freedom adjustment of “sandwich” variance estimator proposed by

MacKinnon (1985). This specific estimator seems quite simple, as it incorporates the

factor of K
K−p , where K is the number of subjects being measured. The formula becomes

VMK =
K

K − p
VLZ (1)

When K →∞ , then VMK → VLZ . VMK corrects the bias but increases the variability.

The second modified estimator which is denoted by VKC and proposed by

Kauermann and Carroll (2001) is a bias-corrected “sandwich” variance estimator under

the assumption of the correct specification of the correlation structure. This estimator

is given by

VKC =

(
K∑
i=1

D′iV
−1
i Di

)−1
MKC

(
K∑
i=1

D′iV
−1
i Di

)−1
(2)

with Di = ∂µi
∂β

and

MKC =
K∑
i=1

D′iV
−1
i (Ii −Hii)

−1/2r̂ir̂i
′(Ii −H′ii)

−1/2V−1i Di (3)

where Ii is an ni × ni identity matrix and subject leverage Hii is a diagonal matrix with

the leverage of the ith subjects, which can be calculated by

Hii = Di(
∑K

i=1 D′iV
−1
i Di)

−1D′iV
−1
i
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Furthermore, VPAN is the third modified variance estimator which was proposed

by Pan (2001) with two additional assumptions. Firstly, the conditional variance of Yij

given Xij has to be correctly specified. Secondly, a common correlation structure Rc has

to exist across all subjects. This modified variance estimator is given by

VPAN =

(
K∑
i=1

D′iV
−1
i Di

)−1
MPAN

(
K∑
i=1

D′iV
−1
i Di

)−1
(4)

with

MPAN =
K∑
i=1

D′iV
−1
i

{
A

1/2
i

(
1

K

K∑
i=1

A
−1/2
i r̂ir̂i

′A
−1/2
i

)
A

1/2
i

}
V−1i Di (5)

VPAN performs more efficiently as it pools data across all subjects in estimating

Cov(Yi).

We continue with the forth modified variance estimator which is denoted by

VGST and was proposed by Gosho et al (2014). VGST made an additional modification

on Pan’s estimator by incorporating the bias of the term

A
1/2
i ( 1

K

∑K
i=1 A

−1/2
i r̂ir̂i

′A
−1/2
i )A

1/2
i for small K. This estimator is written as

VGST =

(
K∑
i=1

D′iV
−1
i Di

)−1
MGST

(
K∑
i=1

D′iV
−1
i Di

)−1
(6)

with

MGST =
K∑
i=1

D′iV
−1
i

{
A

1/2
i

(
1

K − p

K∑
i=1

A
−1/2
i r̂ir̂i

′A
−1/2
i

)
A

1/2
i

}
V−1i Di (7)

The VGST estimator has a similar bahavior with the VPAN estimator, as it also pools

data across all subjects in estimating Cov(Yi). Particularly, VGST approximately equals

to VPAN when K is large enough and K >> p .

The fifth modified variance estimator which is denoted by VMD and was

proposed by Mancl and DeRouen (2001) is another bias-corrected “sandwich” variance
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estimator which is written as

VMD =

(
K∑
i=1

D′iV
−1
i Di

)−1
MMD

(
K∑
i=1

D′iV
−1
i Di

)−1
(8)

with

MMD =
K∑
i=1

D′iV
−1
i (Ii −Hii)

−1r̂ir̂i
′(Ii −H′ii)

−1V−1i Di (9)

This estimator, unlike VKC does not assume a correctly specified correlation structure

while Ii and Hii are defined the same as VKC .

Moreover, it is worthmentioned that Mancl and DeRouen in order to correct the

bias in finite samples, relied on the approximate identity

E(r̂ir̂i
′) ≈ (Ii −Hii)Cov(Yi)(Ii −Hii)

′

ignoring the term
∑

j 6=i HijCov(Yi)H
T
ij from its first-order Taylor expansion leading to

overcorrection (Wang et. al, 2015; Mancl and DeRouen, 2001).

We continue our analysis with the sixth modified variance estimator that was

proposed by Fay and Graubard (2001) and is denoted by VFG. This estimator introduces

a further adjustment on VMD for a simple bias correction. The formula is given by

VFG =

(
K∑
i=1

D′iV
−1
i Di

)−1
MFG

(
K∑
i=1

D′iV
−1
i Di

)−1
(10)

with

MFG =
K∑
i=1

n−1i D′iV
−1
i r̂ir̂i

′V−1i Din
′−1
i (11)

where ni = Ip −Ni. The jjth diagonal value of n
−1/2
i is equal to (1−min(b, {Ni}jj))−1 ,

where Ni = D′iV
−1
i Di(

∑K
i=1 D′iV

−1
i Di)

−1 and b is prespecified subjectively to avoid

extreme adjustments when Ni is close to 1.
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The seventh modified variance estimator, VMBN , provides a bias correction to the

“sandwich” variance estimator and was suggested by Morel et al (2003). VMBN

incorporates correlation on the residual cross-products and sample size and is given by

VMBN =

(
K∑
i=1

D′iV
−1
i Di

)−1
MMBN

(
K∑
i=1

D′iV
−1
i Di

)−1
(12)

with

MMBN =
K∑
i=1

D′iV
−1
i (kr̂ir̂i

′ + δmξVi)V
−1
i Di (13)

where k = N−1
N−p

K
K−1 , δm =


p

K−p K > (d+ 1)p

1
d

otherwise

and

ξ = max

(
r,

trace

((∑K
i=1 D

′
iV
−1
i Di

)−1

MLZ

)
p

)
with 0 ≤ r ≤ 1.

Morel et al. (2003) mentioned that k is a factor to adjust the bias of empirical

variance estimator of Cov(Yi) and δm can be bounded by 1/d. The default value for d

is 2 and for r is 1, respectively.

Last but not least, we introduce the final among the most recent variance

estimators, which is a combination of VPAN and VMD for pooling information from all

subjects and also reducing the bias of the estimate for eie
′
i. This estimator is denoted

by VWL and is recommended by Wang and Long (2011), while it is written as

VWL =

(
K∑
i=1

D′iV
−1
i Di

)−1
MWL

(
K∑
i=1

D′iV
−1
i Di

)−1
(14)

with
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MWL =
K∑
i=1

D′iV
−1
i A

1/2
i

{
K∑
i=1

A
−1/2
i (Ii −Hii)

−1r̂ir̂i
′(Ii −H′ii)

−1A
−1/2
i /K

}
A

1/2
i V−1i Di

(15)

As this estimator is the combination of the strength of both previous estimators

VPAN and VMD, it was supposed to perform as well as or better than those two. The

additional assumptions specified in the notation of VPAN also need to be satisfied in

VWL.

Since we have presented the eight most recent adjustments and corrections on

the classical “sandwich” variance estimator, we continue our analysis by comparing

theoretically those variance estimators. One can notice that all these estimators share

the same two outside terms, that is (
∑K

i=1 D′iV
−1
i Di)

−1. As a consequence, the middle

matrix, M , differentiates itself among the eight corrections. Wang and Long (2011)

have shown that the modifications through the degrees-of-freedom adjustment or

bias-correction are mostly applied when the sample size is small, as VLZ tends to

underestimate the variance. Additionally, VPAN , VGST and VWL incorporate the

efficiency gain by pooling data across all subjects in order to improve the estimator of

Cov(Yi) instead of using only data from the ith subject.

VWL is the only estimator which takes into consideration both bias correction

and efficiency improvement. Thus, it is expected to outperform the other alternatives

when the two assumptions mentioned before are satisfied.

In the following tables we provide a summary of the eight modified variance

estimators that we introduced above, based on Wang et.al (2015).
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Table 1: Summary of eight modified variance estimators for GEE with small sample.

Variance estimator Modification Reference

VMK Degrees-of-freedom adjustment MacKinnon (1985)
VKC Bias correction Kauermann and Carroll (2001)
VPAN Efficiency improvement Pan (2001)
VGST Efficiency improvement Gosho et al. (2014)
VMD Bias correction Mancl and DeRouen (2001)
VFG Bias correction Fay and Graubard (2001)
VMBN Bias correction Morel et al. (2003)
VWL Bias correction and efficiency improvement Wang and Long (2011)

Table 2: Covariance matrix of the middle parts from nine
variance estimators for GEE.

Matrix M Covariance matrix of vec(M)

MLZ

∑K
i=1 SiTiS

′
i

MMK

∑K
i=1

K2

(K−p)2 SiTiS
′
i

MKC

∑K
i=1 SiFiTiF

′
iS
′
i

MPAN

∑K
i=1 Si

[
Ei(
∑K

j=1
1
K2 E

−1
j TjE

−1
j )Ei

]
S′i

MGST

∑K
i=1 Si

[
Ei(
∑K

j=1
1

(K−p)2 E
−1
j TjE

−1
j )Ei

]
S′i

MMD

∑K
i=1 SiGiTiG

′
iS
′
i

MFG

∑K
i=1 HiTiH

′
i

MMBN

∑K
i=1 SiNiS

′
i

MWL

∑K
i=1 Si

[
Ei(
∑K

j=1
1
K2 E

−1
j GjTjG

′
jE
−1
j )Ei

]
S′i

Ti = Cov(vec(r̂ir̂i
′)); Si = (D′iV

−1
i )⊗ (D′iV

−1
i );

Fi = (Ii −Hii)
−1/2 ⊗ (Ii −Hii)

−1/2;

Gi = (Ii −Hii)
−1 ⊗ (Ii −Hii)

−1; Ei = A
1/2
i ⊗A

1/2
i ;

Hi = (n−1i D′iV
−1
i )⊗ (n−1i D′iV

−1
i );

Ni = Cov(kvec(r̂ir̂i
′) + vec(δmξVi)).
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3 Simulation Study

This chapter aims to compare the performance of the original “sandwich”

variance estimator for small samples with the eight modified variance estimators

through simulation studies. The Wald test and t-test are used for hypothesis testing in

order to calculate the type I error rate for each estimator. We generated data sets with

equal cluster sizes. Three models, one for each type of response repeated outcome

(continuous, count and binary) are applied.

The models we used for data generation are the following:

Yij = β0 + β1 × xij + bi + εij (1)

log(uij|bi) = β0 + β1 × xij + bi (2)

logit(uij|bi) = β0 + β1 × xij + bi (3)

The null hypothesis is β0 = 0 and β1 = 0 for i = 1, 2, ..., K with sample size

K = 10, 20, 30, 40, 50 and j = 1, 2, ..., n with equal number of observations

within-subject (i.e., cluster size) n = 5, 10. The covariate xij follows the standard

normal distribution N(0, 1) and is independent and identical distributed. The

subject-level random effects bi’s are also independent and identical distributed from the

normal N(0, σ2
b ) with σ2

b = 0.45 and the random errors are also i.i.d. from the normal

distribution N(0, σ2
ε ) with σ2

ε = 0.8.

More specifically, for the case with continuous outcomes, bi and εij are

independent with each other with the correlation parameter a =
σ2
b

σ2
b+σ

2
ε
≈ 0.4 .

For the case with count outcomes, according to Guo et al. (2005), the correlation

parameter is a ≈ σ2
b

1+σ2
b
≈ 0.3 .

Last but not least, for the case with binary outcomes the correlation parameter

is given by

a ≈ σ2
b/16

E( 1
1+exp(−bi)

)[1−E( 1
1+exp(−bi)

)]
≈ 0.1 according to Guo et al. (2005).
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In Generalized Estimating Equations, the Wald test as well as the score test are

the most commonly used for the hypothesis testing. However, the Wald test gives

bigger than we expected type I error when the sample size is small and the score test

has smaller test size than the nominal level. In order to avoid these problems, two

modified tests have been proposed; the t-test and the modified score test. Supposing

that the parameter of interest is denoted by β and for the simple univariate case, the

null hypothesis is given by H0 : β = 0 against the alternative hypothesis H1 : β 6= 0.

The test statistic for the Wald test is z = β̂√
V̂ (β̂)

, where V̂ (β̂) can be replaced by any of

the modified variance estimators. We denote k as the estimated mean and v as the

estimated variance of V (β̂). The distribution of V̂ (β̂)
c

is approximated with a chi-square

distribution X2
d where the scale parameter is given by c = v

2k
and the degrees of freedom

by d = 2k2

v
. Moreover, the t-test has the following test statistic; t = β̂/

√
k√

V̂ (β̂)/cd
which is

similar to that of Wald statistic with the degrees of freedom d ≈ 2V̂ (β̂)2/V̂ ar(V̂ (β̂))

(Wang and Long, 2011; Pan, 2001). This approximation incorporates the variability of

the variance estimator and as a result, it performs better compared with that proposed

by Li and Redden (2015) which depends only on the number of clusters.

Under certain regularity conditions, the maximum likelihood estimator β̂ has

approximately in large samples a multivariate normal distribution with mean equal to

the true parameter value and variance-covariance matrix given by the inverse of the

information matrix, so that β̂ ∼ Np(β, I
−1(β)). The regularity conditions include the

following: the true parameter value β must be interior to the parameter space, the

log-likelihood function must be thrice differentiable, and the third derivatives must be

bounded. This result provides a basis for constructing tests of hypotheses and

confidence regions. For instance, under the hypothesis H0 : β = β0 for a fixed value β0,

the quadratic form

W = (β̂ − β0)
′var−1(β̂)(β̂ − β0)

has approximately in large samples a chi-squared distribution with p degrees of freedom.

The simulation consists of 1000 Monte Carlo iterations for each model, where the

parameter estimates β̂0 and β̂1 are calculated with all nine variance estimates. Three

types of “working” correlation structures are used: independence, exchangeable and
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AR-1, while the Wald test and t-test are applied for hypothesis testing and empirical

type I error is calculated at the significance level of 0.05 . The true variance of the

regression coefficient estimate, β̂1, was obtained by the variance of β̂1’s from the 1000

Monte Carlo data sets. Moreover, the degrees of freedom for t-distribution vary across

different variance estimators, indicating the variability influence of variance estimators.

The following table was computed in R and provides information about the

performance of all nine variance estimators. For brevity and ease in comparing, we

present a small part of it.

Table 3: Simulation results for normal distributed re-
sponses Yij with the underlying true correlation coeffi-
cient α = 0.2 and 95% nominal level.

n K Variance estimator V (β̂1)(SD) CRZ(CRT )

Exchangeable
5 10 True 0.029

VLZ 0.022(0.014) 0.89(0.92)
VPAN 0.024(0.008) 0.92(0.94)
VMD 0.032(0.022) 0.93(0.95)
VWL 0.028(0.011) 0.95(0.95)

20 True 0.013
VLZ 0.012(0.005) 0.92(0.94)
VPAN 0.011(0.003) 0.93(0.94)
VMD 0.014(0.007) 0.94(0.95)
VWL 0.013(0.003) 0.94(0.95)

V (β̂1) is the average estimated variance of β̂1;
SD is the Monte Carlo standard deviation of the estimated
variance of β̂1;
CR is the Monte Carlo coverage rate of Wald confidence
interval for β1;
Z: Wald-test; T: t-test.
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The results from all different types of outcomes (continuous, count and binary)

are similar to those in the above table and can be summarized as follows: (1) The VLZ

estimator tends to underestimate the true sampling variance of β̂1 and the resulting

coverage rates fall far short of nominal levels.

(2) For moderate sample size, all modifications achieve similar performance in

terms of coverage rates.

(3) The coverage rates of confidence intervals based on t-tests are higher than

those using Wald tests and are closer to nominal levels in most cases.

(4) The VWL estimator exhibits smaller bias and leads to coverage rates closer to

nominal levels comparing to the other variance estimators.

We continue by presenting the following Figures which were conducted in R and

then we summarize our results. We note that the figures based on the “independent”

working correlation structure are omitted, as they present similar trend to that of AR-1.
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Figure 1: Type I errors based on Wald test and t-tests for continuous outcomes with
the exchangeable correlation structure.
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Figure 2: Type I errors based on Wald test and t-tests for continuous outcomes with
the AR-1 correlation structure.
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Figure 3: Type I errors based on Wald test and t-tests for count outcomes with the
exchangeable correlation structure.
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Figure 4: Type I errors based on Wald test and t-tests for count outcomes with the
AR-1 correlation structure.
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Figure 5: Type I errors based on Wald test and t-tests for binary outcomes with the
exchangeable correlation structure.
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Figure 6: Type I errors based on Wald test and t-tests for binary outcomes with the
AR-1 correlation structure.
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The most interesting results from our graphical study are described below:

(1) The results based on Wald test confirm our expectation and show that the

VWL variance estimator performs better than the others. The use of VLZ robust

variance estimator always results in inflated type I error, particularly when the sample

size is small, i.e. ≤ 50 . Moreover, the other estimators lead also to inflated type I error

but the degrees of freedom are smaller.

(2) The t-test for hypothesis testing performs better than the Wald test

regarding the control of type I error across all estimators, while the VLZ estimator still

leads to patched type I error. However, VLZ performs satisfactorily when the “working”

correlation structure is specified correctly, even when the sample size is small (e.g. 10).

(3) As one can realize from the Figures, the sample size K plays a really

important role to the performance of variance estimators for t-tests; the bigger the

cluster size becomes, the more conservative results we gain.

(4) VKC estimator attains worse performance than VLZ based on Wald tests as

indicated by greater inflation on type I error, but improves itself when the cluster size

increases.

(5)There are some modified variance estimators that present a really conservative

performance when the sample size is small, such as the estimators VGST and VMBN .

(6) Last but not least, VWL performs better among all nine variance estimators,

thus it is the most preferable estimator for the GEE methodology even when the sample

size is as small as 10.
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4 Data example

4.1 Background Study

Analyzing the growth curves of individuals over time or determining the effects

of the continued administration of treatments over time are examples that longitudinal

studies are required. One of the most widely known examples of growth curve analysis

is that of Potthoff and Roy (1964) data set, which will be analytically discussed and

alanyzed in this chapter. Their data consist of measurements obtained during a dental

study from 11 girls and 16 boys at the ages of 8, 10, 12 and 14. The response measure is

the distance between the pituitary and pterygomaxillary fissure for each child and the

purpose of this study is to examine growth of this structure over time and to determine

if there are significant differences between girls and boys. A simple approach to

analyzing these data would be to conduct a two sample t-test between the

measurements from the girls and the measurements from the boys. This approach,

although easy to implement, would be invalid and would ignore the time effect in the

data. This is because more than one observation from each individual would be

included in the data, thereby violating the assumption of independent observations.

Under the assumption of having data that are normally distributed and

continuous, one could perform multiple t-tests (Crowder & Hand, 1990; Davis, 2002).

Therefore, t-tests would be performed between the measurements of the girls and boys

at each occasion. The difficulty using this approach would be in deciding on an overall

conclusion, since some of the tests may show significant differences and others may not,

leading to the possibility of subjective conclusions. Alternatively, a t-test could be

performed on the data from the final measurement occasion only, but this would result

in a huge amount of data waste. In particular, this method would not allow for an

analysis of growth trends.

To compare the measurements at different time points, paired t-tests could be

performed between the data at two different ages. All possible paired combinations of

ages could be considered. Because the test comparing time 1 to time 2 will be related

to the test comparing time 2 to time 3 and time 1 to time 3, these tests are not

independent, and this can cause the probability of finding at least one test significant to
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increase spuriously (Crowder & Hand, 1990; Davis, 2002).

Subject, gender and time could be included in an analysis of variance (ANOVA)

approach to analyzing the data, resulting in the model yij = β0 + β1δi + β2i + β3j + εij

where δi is an indicator for gender and β2i , β3j are adjustments to the mean response

for the ith individual and the jth measurement occasion respectively, while the εij is the

error term. Alternatively, time can be included as a continuous covariate, changing this

to an analysis of covariance (ANCOVA). Since subject is included in the mean structure

of this model, this approach would imply that the subjects included were the only

subjects of interest and inference could not be made beyond these individuals. It also

does not allow for the inclusion of variability arising from the random sampling process,

and therefore underestimates the variability in the data (Allison, 2005).

A different approach could be to summarise the vector of measurements for each

individual into one summary measure (Crowder & Hand, 1990). For this method to be

effective, a summary measure needs to be chosen that will adequately describe the

subjects’ data (Crowder & Hand, 1990; Davis, 2002). This method is referred to as

response feature analysis. Examples of response features include the mean, maximum

rate of increase, time to reach maximum rate of increase, half-life, or the slope of the

least squares regression line. Then, the model simplifies to yi = β0 + β1δi + εi , where

the term yi is the response feature and εi is the random error of the response feature for

subject i.

These methods require the assumption that the variance of the derived response

feature be homoscedastic. This would be violated if there are different numbers of

observations being summarised for each individual, implying that this can only be

achieved when there are no missing values and the number and sequence of

measurements are the same for each individual (Fitzmaurice et al., 2004).

All of the methods discussed so far result in information loss and make very

strong assumptions about the data, such as homogeneity of variance (Crowder & Hand,

1990; Fitzmaurice et al., 2004). None of these methods consider the covariance between

repeated measures on the same individual, which may contain much information about

the total response of an individual. Therefore, in order to take full advantage of the

longitudinal study design, methods of analysis which explicitly include the covariance
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between repeated measures should be used.

4.2 Problems related to using simple techniques

As it is mentioned above, there are many methods that can be used in

longitudinal analysis. Despite the fact that these methods are really simple in use and

can be useful for exploring data, one must be very careful as an overly simple analysis

for repeated measurements may result in efficiency loss i.e. increasing the variability

while not capitalising on the information available in the data, as well as biasing the

results (Weiss, 2005).

Loss of efficiency can result from omitting subjects, e.g. because they contain

missing data or from omitting observations in order to accommodate a certain method

of analysis.

Bias can be introduced into the analysis in a number of ways, e.g. by means of

inappropriate experimental designs, inappropriate analysis or leaving out subjects for

reasons related to the study. If the design of a study leads to subjects being sampled so

that the true sampled population is different to the intended population of interest,

then the results of the analysis will be biased in favour of the subset of the population

that was sampled. Therefore appropriate randomisation is important to avoid bias.

Moreover, if there exist groups with differences in a longitudinal study, the result

can be the same using a simple statistical method. For instance, two groups that have

different means may have the same slope over time or the slopes could be very different

or in both cases the same difference in means may be found. Therefore simple analyses

are very limited in the types of conclusions that can result in.

Alternatively, it is also very possible that two groups with very different

responses over time can result in a non-significant result. For example, two groups may

have the same average over time, but their slopes could be very different. Therefore

these groups respond differently over time, but their averages do not convey this

information (Weiss, 2005; Fitzmaurice et al., 2004). In that case, means of analysis such

as repeated measures ANOVA is too restrictive in the compound symmetry assumption

for the covariance structure, which assumes equal covariance between all repeated
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measures, and can lead to overly conservative conclusions (Fitzmaurice et al., 2004).

Much of the loss of information resulting from overly simple methods of analysis

is due to the disregard of the covariance between observations. Only by incorporating

the covariance into the analysis is it possible to make predictions of the subjects’

responses through time (Weiss, 2005).

4.3 Potthoff and Roy dataset analysis

In this section, we present the above results using one real data example in order

to campare the finite performance of different variance estimators under small sample

size. The dataset of Potthoff and Roy (1964) is a classic example of growth curve

analysis. The data are related to a dental study of orthodontic measurements on

children, which includes 11 girls and 16 boys repeatedly measured at the ages of 8, 10,

12 and 14. This study was conducted by researchers at the University of North Carolina

Dental School. The response variable is the distance, calculated in millimeters, from the

center of the pituitary to the pterygomaxillary fissure, while the covariates of interest

are age (in years) and gender (male, female). Let yij , i = 1, 2, ..., K and j = 1, 2, ..., ni

denote the length between the pituitary and the pterygomaxillary fissure for the ith

individual at the jth measurement occasion, where there are K individuals and ni

measurement occasions for the ith individual (ni = 4 for all individuals in this example).

The aim is to investigate if there exist statistically significant gender differences

in dental growth measurements and their trends as age increases.

In particular, we are interested in testing the following hypothesis

H0 : F8 = F10 = F12 = F14 of no time effect, where Fs denotes the marginal distribution

of the distances at age s. As recommended for any statistical analysis, we begin by

plotting the data in order to understand the distribution of the data for each age group.

The most important relationship to plot for longitudinal data on multiple subjects is

the trend of the response over time by subject.

The box plots of Figure 7 show the minimum, first quartile, median, third

quartile, and the maximum distance measured for each time point separately. They

indicate that the measured distances have a skewed distribution (especially as the age
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Figure 7: Box plots and 95% confidence intervals for parameters in the dental study.
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increases). The increase in median gives rise to a time effect. The 95% confidence

intervals at the bottom of Figure 7 present the lower bound, point estimate, and the

upper bound for each time point separately. The point estimates increase, meaning the

older the children, the larger the observed distances between pituitary and the

pterygomaxillary fissure.

> summary(f1np)

Model:

F1 LD F1 Model

Call:

distance ~ age + gender

Relative Treatment Effect (RTE):

RankMeans Nobs RTE

gender0 64.79688 64 0.5953414

gender1 39.52273 44 0.3613215

age8 32.98295 27 0.3007681

age10 43.05966 27 0.3940709

age12 58.32812 27 0.5354456

age14 74.26847 27 0.6830414

gender0:age8 42.87500 16 0.3923611

gender0:age10 52.43750 16 0.4809028

gender0:age12 72.65625 16 0.6681134

gender0:age14 91.21875 16 0.8399884

gender1:age8 23.09091 11 0.2091751

gender1:age10 33.68182 11 0.3072391

gender1:age12 44.00000 11 0.4027778

gender1:age14 57.31818 11 0.5260943

Wald-Type Statistc (WTS):

Statistic df p-value
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gender 8.797738 1 3.016043e-03

age 103.424543 3 2.851266e-22

gender:age 4.676974 3 1.970375e-01

ANOVA-Type Statistc (ATS):

Statistic df p-value

gender 8.797738 1.00000 3.016043e-03

age 46.191394 2.55914 7.475954e-26

gender:age 1.872467 2.55914 1.412992e-01

Modified ANOVA-Type Statistic for the Whole-Plot Factors:

Statistic df1 df2 p-value

gender 8.797738 1 17.57258 0.008431029

Considering the above summary for each age group s, the rank mean of the

overall ranks (RankMeans), the number of observations (Nobs) and the point estimate

p̂s of the relative treatment effect (RTE) are displayed. The obtained result of 0.30 for

the age group 8 (time8) can be interpreted, for example, as follows: a randomly chosen

observation from the whole dataset results in a smaller value than a randomly chosen

observation from the age group 8 with an estimated probability of 30%. Further, since

p̂8 <p̂10 <p̂12 <p̂14, the observations from the age group 8 tend to result in smaller values

than those from the age group 10 which, in return, also tends to result in smaller values

than the measurements from the age groups 12 and 14, respectively. Thus, an increase

in the effect seems to indicate the increase in the measured distances. To test the

hypothesis HO of no time effect, Wald-Type Statistic (WTS) and Anova-Type Statistic

(ATS) can be applied, which are also displayed in the output of the model summary.

The column degrees of freedom (df) for ATS is the numerator degrees of freedom of the

F distribution as the denominator degrees of freedom is set to infinity. Both WTS and

ATS yield highly statistically significant p-values of 2.85× 10−22 and 7.48× 10−26,

respectively, indicating that the null hypothesis of no time effect is to be rejected. To

investigate the question about which of the four distribution functions differ, we can
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apply multiple comparisons with the Bonferroni adjustment as described below:

Table 4: Multiple comparisons against the control in the dental study with Bonferroni
adjustment.

Comparison Hypothesis p-value Adjusted p-value

Time 8 vs Time 10 H0 : F8 = F10 0.2204 0.6612
Time 8 vs Time 10 H0 : F8 = F12 <0.0001 <0.0001
Time 8 vs Time 10 H0 : F8 = F14 <0.0001 <0.0001

The results are presented in Table 3, where, for brevity, only the p-values

obtained from ATS are reported. In Table 3, the Bonferroni-adjusted p-value of 0.6612,

obtained for testing the age group 8 against the age group 10 (Time 8 vs. Time 10), is

calculated by multiplying the original p-value of 0.2204 by 3. Similar calculations are

also performed for the other pairwise comparisons. From the results, we can conclude

that the distance between the center of the pituitary and the pterygomaxillary fissure

significantly increases over time by observing the p-values of � 0.0001 from both WTS

and ATS. In addition, we notice significant differences between the distributions of the

measured distances for the age groups 8 and 12 and age groups 8 and 14, respectively.

To compare the obtained results and conclusions with parametric methods, we further

reanalyze the data with the lme() function in the R package nlme (Pinheiro et al. 2012).

We obtain an overall significant time effect (p-value � 0.0001). Regarding the

multiple comparisons against age group 8 and multiplying the original p-value by 3, we

obtain the adjusted p-value of 0.4395 for the comparison “Time 8 vs. Time 10”, as well

as the p-values of 0.0009 and � 0.0001 for “Time 8 vs. Time 12” and “Time 8 vs. Time

14”, respectively. Thus, both parametric and nonparametric procedures result in similar

conclusions in this example, which is not surprising since the data exhibit only a minor

degree of skewness as indicated by the box plots.

We continue our analysis with the following graph:
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Figure 8: A lattice plot (groupedData) of the average distance (mm) versus age (years)
by subject for the Potthoff and Roy data set.
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In this plot in which the data for different subjects are shown in separate panels

with the axes held constant for all the panels, allows for examination of the time-trends

within subjects and for comparison of these patterns between subjects. Through the use

of small panels in a repeating pattern Figure 8 conveys a great deal of information, the

individual time trends for 27 subjects all of them being examined at the age of 8, 10, 12

and 14 years.

As stated above, all the panels have the same vertical and horizontal scales,

allowing us to evaluate the pattern over time for each subject and also to compare

patterns between subjects. It is provided to enhance our ability to discern patterns in

both the slope (the typical change in distance per year of examination for that

particular subject) and the intercept (the average distance for the subject).

The aspect ratio of the panels (ratio of the height to the width) has been chosen,

according to an algorithm described in Cleveland (1993), to facilitate comparison of

slopes. The panels have been ordered (from left to right starting at the bottom row) by

increasing intercept. Because the subject identifiers, shown in the strip above each

panel, are unrelated to the response it would not be helpful to use the default ordering

of the panels, which is by increasing subject number. If we did so our perception of

patterns in the data would be confused by the, essentially random, ordering of the

panels. Instead we use a characteristic of the data to determine the ordering of the

panels, thereby enhancing our ability to compare across panels. For example, a question

of interest to the experimenters is whether a subject’s rate of change in distance is

related to the subject’s initial distance. If this was the case we would expect that the

slopes would show an increasing trend (or, less likely, a decreasing trend) in the left to

right, bottom to top ordering.

There is little evidence in Figure 8 of such a systematic relationship between the

subject’s initial distance and their rate of change in distance per year of measurement.

We do see that for each subject, the distance increases, more-or-less linearly, with the

increase of the age. However, there is considerable variation both in the initial distance

and in the annual rate of increase in distance. We can also see that these data are

balanced, both with respect to the number of observations on each subject, and with

respect to the times at which these observations were taken. This can be confirmed by
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cross-tabulating subject and years.

In cases like this where there are several observations (4) per subject and a

relatively simple within-subject pattern (more-or-less linear) we may want to examine

coefficients from within-subject fixed-effects fits. However, because the subjects

constitute a sample from the population of interest and we wish to drawn conclusions

about typical patterns in the population and the subject-to-subject variability of these

patterns, we will eventually want to fit a model.

We proceed our analysis by presenting some more graphs in order to provide a

further exploration of our data and then we fit the model using the R “gee” package.
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Figure 9: Plots which indicate the heterogeneity across individuals, across age and across
gender for the Potthoff and Roy dataset.
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Figure 10: Plot which indicates the relationship between the distance and the age for
Men and Women for the Potthoff and Roy data set.

From the above plot one can observe that men have higher measurements of the

distance between the pituitary and the pterygomaxillary fissure compared to women.

Additionally, mens’ slope presents a sharper increase after the age of 10 while the

distance of both genders increases as age grows up.
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Figure 11: Orthodontic measurements by subject over time.

The scatter plot of orthodontic measurements is shown in Figure 11. One can

notice that the boys have higher measurements than the girls on average and the

measurements tend to increase with age.

The same results are also shown in Table 4.

Table 5: The mean Distance for Men and Women.

Age Distance (Men) Distance (Women)

8 22.87500 21.18182
10 23.81250 22.22727
12 25.71875 23.09091
14 27.46875 24.09091
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Figure 12: Boxplots for Intercepts and Slopes for Males and Females of the Potthoff and
Roy data set.

From the above boxplots one can observe that both, intercept and slope, present

bigger variance in men compared to women but they have almost the same mean, which

is approximately near to 22 for the intercept and 0.7 for the slope.

After examining and exploring the data set of orthodontic measurements on

children, we continue with the application of the model. The outcome variable of

interest is dental growth measurements of the distance (in millimeters) from the center

of the pituitary gland to the pterygomaxillary fissure, which was repeatedly measured

at ages 8, 10, 12 and 14 for each child. Age (in years) and gender (female or male) are

the primary covariates of interest. As the distribution of age was skewed, a square-root
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transformation yielded a distribution closer to the normal. The mean model took the

following form:

E(y) = β0 + β1 ×
√
age+ β2 × gender

We fitted the above model and we estimated the regression parameters and their

variance using the nine variance-estimators discussed in Chapter 2. We used the

complete data set of 27 subjects in order to perform the hypothesis testing. The results

are provided in Table 5.

Table 6: Parameter and variance estimates for case study on orthodontic measurements.

β̂ VLZ VMK VPAN VGST VKC VMD VFG VMBN VWL

Independence

Complete
Interc. 6.077 3.462 3.894 3.704 4.167 3.675 3.905 15.593 4.397 4.127√
age 4.319 0.213 0.239 0.213 0.239 0.221 0.229 0.236 0.329 0.229

gender 2.321 0.562 0.632 0.537 0.604 0.612 0.666 0.699* 0.645 0.629

Exchangeable

Complete
Interc. 6.077 3.462 3.894 3.704 4.167 3.675 3.905 6.022 4.121 4.127√
age 4.319 0.213 0.239 0.213 0.239 0.221 0.229 0.220 0.248 0.229

gender 2.321 0.562 0.632 0.537 0.604 0.612 0.666 0.699** 0.669 0.629

AR1

Complete
Interc. 5.999 3.689 4.150 3.994 4.493 3.582 4.160 8.476 4.558 4.445√
age 4.249 0.230 0.259 0.230 0.259 0.223 0.249 0.276 0.289 0.249

gender 2.410 0.569 0.640 0.539 0.605 0.613 0.674 0.707* 0.661 0.632

Unstructured

Complete
Interc. 5.999 3.300 3.712 3.676 4.136 3.313 3.722 5.925 3.961 4.093√
age 4.270 0.217 0.245 0.217 0.245 0.266 0.234 0.224 0.257 0.234

gender 2.220 0.533 0.599** 0.508 0.572 0.613** 0.632** 0.663* 0.630** 0.596

*Not significant on either test at the significance level of
0.01.
**Significant based only on Wald tests at the significance
level of 0.01.
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The results we obtained are consistent with our findings from the simulation

study. More specifically, both Wald-test and t-tests with the significance levels of 0.01

and 0.05 are applied for hypotheses testing.

(1) All nine variance estimators provide comparable results on hypotheses testing

of
√
age with the Wald tests.

(2) t-tests at the significance level of 0.01 provide different conclusions for

gender.Thus, the choice of the small sample adjustment is significant for the statistical

results.

(3) All covariate estimates are statistically significant at a level of a = 0.01 as

well as a = 0.05 using Wald test or t-test except those with the marks.
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5 Conclusions and discussions

In this Master thesis, we analytically presented the theory concerning

Generalized Estimating Equations as long as the theory of marginal models and mixed

effects models. We continued by presenting the robust “sandwich” variance estimator

and the eight most recent variance modifications for GEE in order to improve the

sample properties especially in the case of small sample size. We implemented one

simulation study for three different types of response variables (continuous, count and

binary) and we confirmed our results using the very known dataset of Potthoff and Roy

for orthodontic measurements between 16 boys and 11 girls. The “geesmv” R package

was proved really useful in our numerical study. In addition, we emphasized two

important types of hypothesis testing for GEE, especially when the sample size is small,

Wald test and t-test. The simulation study showed that t-tests based on the variance

estimator VWL perform well.

Despite the fact that there is a great range of bibliography about the recent

developments that concern several modified variance estimators, there is still plenty of

space in order to develop methods about improving the efficiency and the robustness of

parameter estimates. Moreover, our simulation analysis based on equal cluster sizes, so

a very interesting task for the future would be to discover how the simulation study

would be without this limitation. Additionally, greater emphasis could be given on

other issues, such as evaluating the type II error or selecting the appropriate model or

even handling the missing data under the condition of small sample size.

Another issue that could be really interesting and challenging in addition to

modified variance estimators and test statistics is the power analysis (Shih WJ, 1997).

Shih relied on Wald tests using the estimates of regression parameters and robust

variance estimators in order to provide the power calculations. However, these

calculations have two important and necessary conditions that must be fulfilled; (1) the

V (b̂) has to be unbiased and (2) asymptotic normality has to be satisfied. However,

when the sample size is small, the estimated power tends to be overestimated. Thus, a

modification on the power estimation must be applied incorporating the variance

estimators which were discussed in Chapter 2 for improving the efficiency.
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Appendix

1.Code used for the geesmv package in R and the 9 variance estimators for the Capter 3.

### Get necessary information (i.e., the number of clusters, cluster sizes)

### of the data set.

cluster.size(individual)

### 1 (Fay and Graubard, 2001)

data_alt <- reshape(dental, direction="long", timevar="Time",

varying=names(dental)[3:6], v.names="response", times=c(8,10,12,14))

data_alt <- data_alt[order(data_alt$subject),]

data_alt$gender <- as.numeric(data_alt$gender)

data_alt$Time <- sqrt(data_alt$Time)

formula <- response~Time+gender

fg.ind <- GEE.var.fg(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

fg.exch <- GEE.var.fg(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

fg.ar1 <- GEE.var.fg(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

fg.unstr <- GEE.var.fg(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;

fg.ind

fg.exch

fg.ar1
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fg.unstr

### 2 (Gosho et al., 2014)

formula <- response~Time+gender

gst.ind <- GEE.var.gst(formula,id="subject",family=gaussian,data_alt,corstr="independence") ##Independence correlation structure;

gst.exch <- GEE.var.gst(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

gst.ar1 <- GEE.var.gst(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

gst.unstr <- GEE.var.gst(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;

gst.ind

gst.exch

gst.ar1

gst.unstr

### 3 (Kauermann and Carroll, 2001)

formula <- response~Time+gender

kc.ind <- GEE.var.kc(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

kc.exch <- GEE.var.kc(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

kc.ar1 <- GEE.var.kc(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

kc.unstr <- GEE.var.kc(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;

kc.ind

kc.exch
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kc.ar1

kc.unstr

### 4 (Liang and Zeger, 1986)

formula <- response~Time+gender

lz.ind <- GEE.var.lz(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

lz.exch <- GEE.var.lz(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

lz.ar1 <- GEE.var.lz(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

lz.unstr <- GEE.var.lz(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;

lz.ind

lz.exch

lz.ar1

lz.unstr

### 5 (Morel, Bokossa and Neerchal, 2003)

formula <- response~Time+gender

mbn.ind <- GEE.var.mbn(formula,id="subject",family=gaussian,

data_alt,corstr="independence",d=2,r=1) ##Independence correlation structure;

mbn.exch <- GEE.var.mbn(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable",d=2,r=1) ##Exchangeable correlation structure;

mbn.ar1 <- GEE.var.mbn(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M",d=2,r=1) ##AR-1 correlation structure;

mbn.unstr <- GEE.var.mbn(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured",d=2,r=1) ##Unstructured correlation structur;

mbn.ind
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mbn.exch

mbn.ar1

mbn.unstr

### 6 (Mancl and DeRouen, 2001)

formula <- response~Time+gender

md.ind <- GEE.var.md(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

md.exch <- GEE.var.md(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

md.ar1 <- GEE.var.md(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

md.unstr <- GEE.var.md(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;

md.ind

md.exch

md.ar1

md.unstr

### 7 (Mackinnon, 1985)

formula <- response~Time+gender

mk.ind <- GEE.var.mk(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

mk.exch <- GEE.var.mk(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

mk.ar1 <- GEE.var.mk(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

mk.unstr <- GEE.var.mk(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;
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mk.ind

mk.exch

mk.ar1

mk.unstr

### 8 (Pan, 2001)

formula <- response~Time+gender

pan.ind <- GEE.var.pan(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

pan.exch <- GEE.var.pan(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

pan.ar1 <- GEE.var.pan(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

pan.unstr <- GEE.var.pan(formula,id="subject",family=gaussian,

data_alt,corstr="unstructured") ##Unstructured correlation structure;

pan.ind

pan.exch

pan.ar1

pan.unstr

### 9 (Wang and Long, 2011)

formula <- response~Time+gender

wl.ind <- GEE.var.wl(formula,id="subject",family=gaussian,

data_alt,corstr="independence") ##Independence correlation structure;

wl.exch <- GEE.var.wl(formula,id="subject",family=gaussian,

data_alt,corstr="exchangeable") ##Exchangeable correlation structure;

wl.ar1 <- GEE.var.wl(formula,id="subject",family=gaussian,

data_alt,corstr="AR-M") ##AR-1 correlation structure;

wl.unstr <- GEE.var.wl(formula,id="subject",family=gaussian,
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data_alt,corstr="unstructured") ##Unstructured correlation structure;

wl.ind

wl.exch

wl.ar1

wl.unstr

2.Code used for the boxplots in Chapter 4.

library("nparLD")

par(mfrow=c(2,2))

boxplot(distance ~ age, data = mydata, lwd = 1, xlab = "age",

font.lab = 1.2, cex.lab = 1.2, main = "Box Plots")

boxplot(distance ~ gender , data = mydata, lwd = 1, xlab = "gender",

ylab = "distance (mm)", font.lab = 1.2, cex.lab = 1.2, main = "Box Plots")

f1np <- nparLD(distance ~ age + gender, data = mydata, subject = "individual",

description = FALSE)

plot(f1np)

### more information

f1np <- nparLD(distance ~ age + gender, data = mydata, subject = "individual",

description = TRUE)

plot(f1np)

3.Code used for exploring the data set.

coplot(distance ~ age|individual, type="b", data=mydata) ###points and lines

par(mfrow=c(2,2))

plotmeans(distance ~ individual, main="Heterogeneity across individuals", data=mydata)

### plotmeans draws a 95% confidence interval around the means
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plotmeans(distance ~ age, main="Heterogeneity across age", data=mydata)

plotmeans(distance ~ gender, main="Heterogeneity across gender", data=mydata)

4.Code used for analyzing the data set (gee).

mydata_order<- order(as.integer(mydata$individual))

mydata1 <- mydata[mydata_order,]

mydata1

fit.gee1 <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,

corstr="independence", data=mydata1)

summary(fit.gee1)

>summary(fit.gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: Independent

Call:

gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydata1, family = gaussian, corstr = "independence")

Summary of Residuals:

Min 1Q Median 3Q Max

62

CC BY: Attribution alone 4.0

https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.26219/heal.aueb.6669



-5.6156250 -1.3218750 -0.1681818 1.3299006 5.2468750

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 16.3406250 1.4162242 11.538163 1.17148092 13.9486906

age 0.7843750 0.1261673 6.216945 0.09834755 7.9755416

gender 1.0321023 2.2187969 0.465163 1.37778506 0.7491025

age:gender -0.3048295 0.1976661 -1.542143 0.11686730 -2.6083390

Estimated Scale Parameter: 5.093818

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

>

coef(summary(fit.gee1))

##### get the P values using a normal approximation for the distribution of z

> 2 * pnorm(abs(coef(summary(fit.gee1))[,5]), lower.tail = FALSE)

(Intercept) age gender age:gender

3.204341e-44 1.517141e-15 4.537954e-01 9.098279e-03

fit.gee2 <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,
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corstr="exchangeable", data=mydata1)

summary(fit.gee2)

> summary(fit.gee2)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: Exchangeable

Call:

gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydata1, family = gaussian, corstr = "exchangeable")

Summary of Residuals:

Min 1Q Median 3Q Max

-5.6156250 -1.3218750 -0.1681818 1.3299006 5.2468750

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 16.3406250 0.98813100 16.5369015 1.17148092 13.9486906

age 0.7843750 0.07879034 9.9552182 0.09834755 7.9755416

gender 1.0321023 1.54810375 0.6666881 1.37778506 0.7491025

age:gender -0.3048295 0.12344073 -2.4694405 0.11686730 -2.6083390

Estimated Scale Parameter: 5.093818
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Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.6100109 0.6100109 0.6100109

[2,] 0.6100109 1.0000000 0.6100109 0.6100109

[3,] 0.6100109 0.6100109 1.0000000 0.6100109

[4,] 0.6100109 0.6100109 0.6100109 1.0000000

>

coef(summary(fit.gee2))

> 2 * pnorm(abs(coef(summary(fit.gee2))[,5]), lower.tail = FALSE)

(Intercept) age gender age:gender

3.204341e-44 1.517141e-15 4.537954e-01 9.098279e-03

fit.gee3 <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,

corstr="AR-M", data=mydata1)

summary(fit.gee3)

> summary(fit.gee3)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Identity
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Variance to Mean Relation: Gaussian

Correlation Structure: AR-M , M = 1

Call:

gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydata1, family = gaussian, corstr = "AR-M")

Summary of Residuals:

Min 1Q Median 3Q Max

-5.7502655 -1.3670055 -0.1914044 1.2205495 5.1719079

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 16.5946122 1.3530104 12.2649556 1.2788086 12.9766190

age 0.7694567 0.1166041 6.5988813 0.1049699 7.3302593

gender 0.7266739 2.1197599 0.3428095 1.4968683 0.4854628

age:gender -0.2856919 0.1826835 -1.5638623 0.1223804 -2.3344571

Estimated Scale Parameter: 5.099523

Number of Iterations: 3

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.6135308 0.3764201 0.2309453

[2,] 0.6135308 1.0000000 0.6135308 0.3764201

[3,] 0.3764201 0.6135308 1.0000000 0.6135308

[4,] 0.2309453 0.3764201 0.6135308 1.0000000

>

coef(summary(fit.gee3))
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> 2 * pnorm(abs(coef(summary(fit.gee3))[,5]), lower.tail = FALSE)

(Intercept) age gender age:gender

1.660501e-38 2.297079e-13 6.273481e-01 1.957180e-02

fit.gee4 <- gee(distance ~ age + gender + age:gender, id=individual, family=gaussian,

corstr="unstructured", data=mydata1)

summary(fit.gee4)

> summary(fit.gee4)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: Unstructured

Call:

gee(formula = distance ~ age + gender + age:gender, id = individual,

data = mydata1, family = gaussian, corstr = "unstructured")

Summary of Residuals:

Min 1Q Median 3Q Max

-5.6285551 -1.3572403 -0.1781935 1.3128169 5.2189881

Coefficients:
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Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 16.3236414 1.00582208 16.2291539 1.1701159 13.9504481

age 0.7881142 0.08500322 9.2715804 0.0982681 8.0200410

gender 1.0736105 1.57582036 0.6813026 1.3762246 0.7801128

age:gender -0.3100200 0.13317445 -2.3279243 0.1172035 -2.6451442

Estimated Scale Parameter: 5.094256

Number of Iterations: 3

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.5009582 0.7363481 0.5148767

[2,] 0.5009582 1.0000000 0.5552694 0.6208238

[3,] 0.7363481 0.5552694 1.0000000 0.7788356

[4,] 0.5148767 0.6208238 0.7788356 1.0000000

>

coef(summary(fit.gee4))

> 2 * pnorm(abs(coef(summary(fit.gee4))[,5]), lower.tail = FALSE)

(Intercept) age gender age:gender

3.126351e-44 1.057099e-15 4.353245e-01 8.165610e-03
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