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ABSTRACT

Miltiadis Peponoulas

ON DIFFUSION PROCESSES AND THEIR STATISTICAL

INFERENCE: A REVIEW
February 2004

This paper reviews basic stochastic theory applied in diffusions and
provides current statistical inference for such processes. Apart from the
definitions of diffusions and the stochastic differential equations that they
fulfill, basic results of the Itd theory are presented. We establish the
connection between stochastic differential equations and diffusions and
present Kolmogorov’s backward and forward equations. Statistical inference
comprises the problem of identification and estimation of the infinitesimal
drift and diffusion function along to the estimation of the diffusion’s marginal
density. Both nonparametric and parametric methods are discussed. Strict
stationarity for the marginal density is assumed in all cases but one; in that

case recurrence is the identifying feature of the density.
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IHNEPIAHYH

MiAtiadng Ilerovovrag

ZYNOYH XTIX ATAAIKAZIEXZ ATAXYXHX KAI THN

IXETIKH XTATIXTIKH XYMIIEPAXMATOAOI'IA
Ddefpovaprog 2004

H zmapovca dwtpify ovvoyiler Pacukn oroyxactiki Bewpio epappoouévn oe
dlayvoelg KAl TapEYel TPEYOVCO CTATIOTIKY] CUUREPACHATOAOYIN Y10 TETOLEG
dwdikooiec. Extoc TtV OoplopdvV TV SlayVoE®V KOl TOV OTOYACTIKMOV
Srnpopikdv e€lod®oeV TOV OVTEG LKOVOTOL0VV, Tapovotdlovial kol Pacikd
anoteléopota MG Ocopiag. tov Itd. Bepchdvoope tnv ovvdeon petald
OTOYAOTIKOV S10POopiKAOV ££1I0MCEDV KAl S1ay00EMV KAl TAPOVTIOV AVASPOLMV
Kat  TpOdpopmv eEloboewv TOV Kolmogorov. H OTATICTIKY
CVUUTEPACHOTOAOYIO cuvaroTeELEiTal Ao T0 TPOPANULA TOV TPOGII0PLIoULOV KOl
EKTIUNONG TOV OCLVAPTHCE®V OANELPOCTOV OCUVTEAESTH] UETOTOMIONG Kol
GVVTEAECTH dOYVOEWS, TAPAAANAO HE TNV EKTIUNON TNG OPLOKTNG TVKVOTNTAG
mlavotntag g Odyvong. Kar or Svo pébodor, mapapetpikég Kot
anopapeTpikés, ovintoviar. H avotnpd otacipdtnta €xel vmotedei yo v
OpLOKT TVKVOTNTA TOAVOTNTOG Y10 OAEG TIG MEPINTMOELG TANV HIOG CE AVTNV
MV REPITTOON M EMOKEYIUATNTO EIVOL TO YAPAKTNPLOTIKO YVAPIOHA THG

TukvoTnTag mbavotnrag.
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Chapter 1

Introduction

Stochastic processes in general are being increasingly used in scientific research in order
to meet the growing demand for modelling the evolution of various random systems. Con-
stricting ourselves into the class Qf continuous time and state space stochastic processes,
where diffusion processes lie, it is foreseeable that it will burden the greater amount of
such demand. Diverse fields of academic endeavor and/or more applied activity, such as
optimal control theory, financial economics, and statistical thermodynamics are substan-
tially benefitted by the theory of diffusions and the stochastic differential equation that
describe them. Numerous examples that can be found in Physics, Biology, Economics or
even Social Sciences assert the validity of the previous sentence and raise the expectations
for possible applications of the theory in discuss. Such examples range from molecular
motions of enumerable particles subject to interactions to security price fluctuations in
a perfect market and from neurophysiological activity with disturbances to variations
of population growth. The main equation describing diffusions(see (2.4)) involves two
components: the infinitesimal drift u(z), and the infinitesimal variation o?(z) whose
identification, along to the related problem of the estimation of the process’s marginal
density, are the composing parts of the diffusion identification problem. A decisive step
for the analysis of diffusions and intcrrelated problems was the development of a fully

operational “stochastic calculus” by Itd (1951). It6 managed to extend the standard tools



of calculus to functions of a wide class of continuous-time random processes, now known
as It processes. Stochastic integration was the key part for the derivation of a solution
to the stochastic differential equation (2.4) describing It6 diffusions. Even more complex
models driven by It6 processes can be readily accomodated by the It6 transformation
formula. This formula actually describes the closure of the class of diffusions under quite
general nonlinear transformations. This was undoubtly the result that introduced diffu-
sion theory to a hole new variety of disciplines e.g. in finance’s field of derivative pricing
where derivative security prices when expressed as functions of the prices of underlying
assets, easily identified as diffusions, are then subject to It6’s stochastic calculus.
However the purpose of this dissertation is not only to review the probabilistic frame-
work of diffusion processes but also to provide current statistical inference for these
processes. The problems of identification, estimation and investigation of the asymptotic
sampling properties of the continuous-time diffusion process estimators have proved to
be quite difficult and still remain a challenge to researchers. These problems arise of
course by the highly dynamic behavior of diffusions along to unavailability of continuous
sampling observations. With the, already considerable, relative literature being updated
the moment we speak, we have no choice but to make a brief assessment to the most
important papers that formed the existing diffusion theory and report the latest major
developments especially in the domain of nonparametric estimation. Diffusion theory’s
historic advance began as expected with minimum considerations on sampling observa-
tions which were originally considered as continuous by all distinguished authors. For
instance parametric estimators for the drift and/or diffusion function have been proposed
by Brown and Hewitt (1975), Vasicek (1977), Lanska (1979), Brennan and Schwartz
(1979, 1982), Kutoyants (1984) and Cox, Ingersoll and Ross (1985). Nonparametric
counterparts have been proposed by Geman (1979), Pham Dinh (1981), and Banon and
Nguyen (1981). Also Banon (1978) is usually accounted in the previous category by re-
viewers, but we prefer to identify his approach as semi-parametric. Discrete observations

is a set that can be definitely considered as the starting point for drift and diffusion co-



efficient estimation; it is quite straightforward to assert the maximum likelihood method
appliccability to the problem at hand provided the exact transitional density function
or marginal density function is known. But even so the complexity of the required cal-
culations is discouraging except for special cases. The introducing paper to parametric
estimation of the diffusion process based on a set of discrete observations was the one
by Dacunha-Castelle and Florens-Zmirou (1986). They were followed by Dohnal (1987),
Lo (1988), Chan, Karolyi, Longstaff and Sanders (1992), Duffie and Singleton (1993),
Pedersen (1995), and Hansen and Scheinkman (1995). Alternating to nonparametric es-
timation still on the set of discrete sampling observations we study the pioneering paper
of Florens-Zmirou (1993) for diffusion term estimation. Jiang and Knight (1997) refined
some of her findings along to providing the variance of his consistent diffusion estimator.
A series of approximations to the true drift and diffusion were constructed by Stanton
(1996) while Chapman and Pearson (2000), Li and Tcacz (2002) and Fan and Zhang
(2003) commented on his work and extended some of his findings. Bandi and Phillips
(2002) and Moloche (2001) try to surpass the demand of stationarity of the process and
build their estimators based on reccurence. Ait-Sahalia’s (1996) approach is confronted
as semi-parametric.

Diffusion’s marginal density estimation problem can be viewed as a part of the coeffi-
cient estimation problem since density needs to be consistent with the drift and diffusion
coefficients. Banon (1978) for example exploits this consistency in order to deduct the
estimator of the drift. Nevertheless diffusion’s density estimation is more often treated
as a standalone issue and relative papers are provided by Prakasa (1979, 1983), Leblanc
(1995) and Yamato (1971) among others.

The remainder of the dissertation is organized as follows. In chapter 2 we present
the probabilistic and stochastic framework of diffusions. In section 2.1 we derive the
stochastic differential equation that diffusions fulfill. Definitions of diffusion processes
are discussed in section 2.2. Issues concerning stochastic integrals and the It6 equation

are presented in 2.3. Theorems that connect diffusions with the stochastic differential



equation built to describe them, are the issue of section 2.4. In section 2.5 we are con-
cerned with three interesting problems of diffusion processes which are also introducing
to important functionals. Kolmogorov’s backward and forward equations are discussed in
2.6 along to the stationary distribution’s connection with infinitesimal drift and diffusion.
Behavior at the boundaries is the subject of section 2.7 and the chapter concludes with
the Brownian motion paradigm in section 2.8. In chapter 3 we mainly provide statistical
inference for diffusion processes. Preliminaries about kernel density estimators and kernel
smoothing are provided in section 3.1. Various methods for diffusion marginal density
estimation are presented in section 3.2. Nonparametric estimators for infinitesimal drift
and diffusion are discussed in section 3.3 while their parametric analogues are confronted

in section 3.4. Chapter 4 concludes.



Chapter 2

A review on probabilistic theory for

one-dimensional diffusions

2.1 An illuminating physical example

In terms of being comprehensive about diffusion processes we shall study a physical
example of a diffusion phenomenon and draw some useful conclusions.

Such an example that is very popular through the bibliography, is the motion of
small particles suspended in a homogeneous liquid under the influence of collisions with
the molecules of the liquid in chaotic thermal motion. The motion of each particle can
be attributed to two principal forces. First an underlying fluid flow or some external
force impressed on the system that engenders the determenistic (nonrandom) part of
the motion. Second, collisions or other more general interaction relationships with other
particles which cause generally random movements. So if by X; we denote the coordinate
of the particle at instant ¢, and by u (¢, z) the velocity of the motion of the liquid at point
z and instant ¢, then the displacement of the particle for a small duration from time ¢ to

t + At will be approximated by:

Xerar — Xo = p(t, Xo) At + &, x, At (2.1)



The fluctuational component of the displacement is indicated in the equation above by
§: x, At » & random variable whose distribution depends on the position z of the particle,
the time instant ¢ of displacement observance and At the length of time interval. Under
reasonable assumptions this is a process with independent increments for which stands
that: EE, x, ¢ = 0. Since the properties of the medium are naturally assumed to change
only slightly for small changes in ¢ and z, the process is also homogeneous. Therefore we

may assume that:
Et,X.,At = o(t, Xt)ft,At (2.2)

where o(t, z) characterizes the properties of the medium at the time-space point (¢, z)
and &; A, is the value of the increment that is obtained in the homogeneous case under
the condition that o(t,z) = 1.

We know that every continuous homogeneous process with independent increments
is a Gaussian process. Recalling the definition of a Brownian motion B(t),t > 0 as a
stationary Gaussian process with independent increments of zero mean and variance o?t,
o fixed, brings us to the conclusion that {, o, must be distributed like the increment of

a process of Brownian motion. Thus we reach the formula:
Xevar — Xe = p(t, Xo)At + o(t, X)) [B(t + At) — B(t)] (2.3)
If we replace the increments by differentials, we obtain the differential equation:
dX: = p(t, X;)dt + o(t, X;)dB(t) (2.4)

which can be taken as a starting point for defining diffusion processes. The methodology
of stochastic differential equations is the purely probabilistic approach to diffusions, in
a range of approaches that varies from these to the purely analytical. It was suggested
by P.Lévy as an alternative to the existing analytical approach and was carried out in

a masterly way by K.It6(1942a,1946,1951). Since certain theoretical analysis regarding



stochastic integrals and stochastic differentials must be preceded to the solution of the
equation (2.4), along with a comment on the precise meaning of the derivative of B(t),
we shall henceforward illustrate the traditional analytical approach to a diffusion.

2.2 The definition of diffusions and regarding issues

Diffusion processes are in fact special cases of Markov processes, therefore we must illu-
minate some theoretical issues regarding them.

A Markov process is a stochastic process {X:,to < t < T} defined on a probability
space (2, F, P) with state space R for which the following Markov property is satisfied:
Forn>1,tp <t; <t <..<t,<tand B € B,

P(X, € B/Xs,,..X..) = P(X, € B/ X:.) (2.5)

where B is the o-algebra of Borel sets of R.

Loosely speaking, Markov property implies that if the state of the system at a par-
ticular time s is known, additional information regarding the behaviour of the system
at past times t < s has no effect on our knowledge of the probable development of the
system at future times ¢, t > s.

A function that is basic to the study of Markov processes is the transition probability

function which is defined as follows:
B3 s £ ) =P (X A S AN S (2.6)

for t > s. When the transition probability P(s,z;t, A) is stationary, that is, if the condi-
tion:

P(s+ h,z;t + h, A) = P(s,z;t, A) (2.7)

holds for tp < s <t < T and ty < s+ h < t+ h < T ,the Markov process is said to be

homogeneous (with respect to time).



A final issue to be introduced before diffusions are to be defined, is the strong Markov
property. This property restricts the probability distribution of

X(t1+0),X(t2+0),..,X (1t +0) (2.8)

with ¢; < ty < ... < i, given X(s), s < o, and X(o) = z , to be identical with the
probability distribution of
X(t), X (t2), ..., X (ts) (2.9)

given X (0) = z for any Markov time o (which is actually a random time). We remind
that a random variable o is considered to be a Markov time relative to a given process
{X:}, 0 < t < 400, if for two sample functions of the process X; and Y;, such that
X; =Y, for 0 X 7 < s and o(X}) < s, it holds that o(X;) = o(¥3).

According to Karlin and Taylor (1981), a diffusion process is a continuous time para-
meter stochastic process which possesses the strong Markov property and for which the
sample paths X (¢) are (almost always) continuous functions of the time parameter t.

A diffusion process {X(t),t > 0} is said to be regular if starting from any point
in the interior of its state space I any other point in the interior of / may be reached
with positive probability. The state space of X(t) is actually an interval with endpoints
l,r with | < r and necessarily of the form (I,r), ({,7],[l,7),{l,r], where | = ~co and/or
r = 400 is an option.

Although the definition above is more in order with the modern setup, we cannot
ignore a more traditional approach found through a great part of the bibliography, which
is also confronting to essential notions of diffusion theory. This definition is the following:

A Markov process {X;,tgp < t < T} with state space R and continuous sample
functions is called diffusion process if its transition probability P(s,z;t, A) satisfies the
following three conditions for every s € [ty,T], z € R and £ > 0:

(i) lim P(s,z;t,dy) =0 (2.10)

tls Jjy—z|>e



(ii) there exists an R-valued function u(s,z) such that

tls

m (=) [ (y=2)Pls,zit,dy) = (s, ) (2.11)

(iii) there exists a real non-negative function o?(s, z) such that

lggl (t—s)? /Iy—mlsa(y — z)2P(s, z;t, dy) = o*(s, x) (2.12)
the functions u and o? are termed the infinitesimal parameters of the process, and, in
particular, u(t,z) the drift coefficient or infinitesimal mean and o?(t,z) the diffusion
coefficient or infinitesimal variance of the diffusion process X. The justification of the
terminology used, becomes more visible when the truncated moments of the above re-
lationships are replaced by the regular moments. The latest need not necessarily exist,

but this is not the case when the following condition holds
E{|X,= X,[*** /X, =z} = /R ly— o P(s,zt,dy) = ot —s)  (2.13)

for some § > 0. Supposing (2.13) the regions of integration in (ii) and (iii) can be chosen

to be R and we are brought to
BE(X;— X/ X, =z) = p(s,z)(t —s) + o(t — s) (2.14)

and

E{(X; - X.)*/ X, =z} = (s, z)(t — 8) + o(t — 5) (2.15)

which if seen under the equivalent form

E{X; - XS/XS =z} = u(s,z) + Ott_—ss) (2.16)
and \
E{(X%)Sﬂ 1X, 5 5} Eio%(s,7) + Osf_‘:) (2.17)

can have the following interpretation: p(s,x) is a mean rate of change of the process while

9



visiting z at time s, while 0%(s, z) is a measure of the local magnitude of the fluctuation
of X; — X, about this mean value.

As far as condition (i) is concerned it develops to
P(|X: — X,| >e/X; = z) = ot — s) (2.18)

which actually means that large changes in X; over a short period of time are improbable.

It is of value to have verifiable sufficient conditions under which a Markov process is a
diffusion process. The concept of standard process is now introduced in order to facilitate
this purpose. A strong Markov process {X(t),t > 0} is called a standard process if the
sample paths possess the following regularity properties:

(i) X(t) is right continuous i.e. ltlgl X(t)=X(s) forall s >0

(ii) left limits of X (¢) exist, i.e. llensl X (t) exists for all s > 0 and

(iii) X (t) is continuous from the left through Markov times, i.e. if T} < Ty < ... are
Markov times converging to finite T then Jim X (Tn) = X(T)

A sufficient condition that a standard process be a diffusion is then the fulfillment of

the Dynkin condition:
1
EP{]X(t—!—h) X)) >='X(t)=zx}—0 (2.19)

when € > 0, as h | 0, where the convergence prevails uniformly for z restricted to any

compact subinterval of the state space and t traversing any finite interval [0, V].

10



2.3 Stochastic Integrals: solution of the stochastic

differential equations

We can now focus to the solution of the stochastic differential equation (2.4), which by
applying the usual integration notation can be expressed

t t
X, = Xo+ /O u(s, X)ds + « [ o(s, X)dB. (2.20)

In attaching meaning to the last term of (2.20) it is impossible to employ the standard
calculus of integrals because almost every sample path of B(t) is of unbounded variation.
Therefore it is imperative to prove the existence of this term and study the sense of
integration. Let us first consider an elementary function ¢,which is a functions of the

form

d)(t:w) =Z €; (w)I[tj,tj+1)(t) (221)

j=0
where [ is the indicator function and each e; is an F;;-measurable function. We remind
at this point that F; is the o-algebra generated by the random variables B; with s < t.

For such functions it is reasonable to define

[, eltw)dBiw) =L es@)Buys — Byl(w) (222

320
The next step is to approximate a given function f(¢,w) by
Z f(t;, W)I[tj,tjﬂ](t) (2.23)
J
where t} € [t;,t;41] and then define JT f(t,w)dB;(w) as an appropriate limit of the

quantity (2.23) as n — oo. Unlike the Riemann-Stieltjes integral the choice of t} influences

the final result. The most useful choices have turned out to be the

11



1. tj = t; (the left end point), which leads to the Ito integral from now on simply
denoted as [3 f(t,w)dBi(w)

2. 7 = 3 (t; +tj41) (the mid point), which leads to the Stratonovich integral, from
now on denoted by S — [7 f(t,w)dB;(w)

It can be proven that for every f € V, there is a sequence of elementary functions

@, € V such that

T 2
E{/s f =8, dt} ~0 (2.24)
for such a sequence we define
T T
[ fe@)dBuw) =Jim, [ ga(t,w)dB(w) (2.25)

The S-integral generally differs from the Ito integral by a corrective term. If we name
the solutions of stochastic differential equations after the type of the integrals been used,

then for the most pertinent equation to our study
dXy = p(t, X)dt + o(t, X;)dB(t) (2.26)
the S-solution, or coincidingly the Wong-Zakai solution, will be X (¢) satisfying
Xi = Xo + /Ot#(s, X.)ds + S /01t (s, X,)dB, (2.27)

For the I-solution to agree with the solution given above, the stochastic differential equa-

tion (2.26) should be modified to

dX, = [u(t, X.) + éaz(t,Xt)a(t,Xt)]dt + o(t, X,)dB() (2.28)

12



involving the correction term 20,0 contributing to the infinitesimal drift coefficient. This

implies that X, is the solution of the following modified Ito equation
t 1 rt t
X:=Xo +/0 u(s, Xs)ds + -2-/0 oz(s, Xs)o(s, X,)ds +/0 o(s,X;)dB, (2.29)

For o(t,z) independent of = the S and the I-solution obviously coincide since o, = 0.
Even though the Stratonovich integral presents several advantages such as compliance
with the ordinary chain rule formula under a transformation, the Ito integral will be our
tool of integration henceforward. This is mainly due to the exclusive martingale property
of the Ito integral.

Calculations concerning Ito integrals are facilitaded by the Ito stochastic transforma-
tion formula which for Y (t) = f(t, X(t)), f € C*([0,00) x R) (i.e. f twice continiously
differentiable on [0, 00) x R) and X (t) the Ito solution of (2.26) gives that Y; is again an

Ito process, and

dY, = [fo(t, X(®)ut, X)) + fi(t, X () + %fm(t,X (t)a*(, X (¢))]de
+f(t. X (t))o(t, X (t))dB(t) (2.30)

or in integral form

Y -Y(©) = [ IftXOnXE)+ Al XE) (2.31)

b Faalt X, X Ot + [ Folts X()o(t, X))

The conditions that are necessary for the existence and uniqueness for solutions of

the stochastic differential equation

dX, = p(t, X,)dt + o(t, X;)dB(t) (2.32)

13



equivalent to the integral notation
t t
X, = Xo+ / (s, X, )ds + / o(s, X,)dB, (2.33)
0 0

are the following

1. Growth condition: There exists a constant K independent of 0 < ¢t < T and

—00 < x < 0o such that
P2t z)d+ o (t,z) < K(1+12%), —-oco<z<o0 (2.34)

In the context of ordinary differential equations a growth restriction is essential in
order to be assured that the solution can be continued for the total time horizon

0 < t < T without exploding to infinite at an intermediate time point.

2. Lipschitz conditions: There exists a constant L independent of ¢, 0 < ¢ < T , and

of z, —oo < z.y < oo such that
lut,z) — p(t, y)l + |o(t,z) —o(t,y)| < Lz - y| (2.35)

The Lipschitz condition is guaranteeing uniqueness for solutions of ordinary differ-

ential systems.

For p and o satisfying conditions (2.34) and (2.35) and E[{X(0)}?] < oo there exists
a unique solution of (2.33) as a continuous process. This proposition is actually the first
existence theorem for solutions of stochastic differential equations.

There are two kinds of solution for (2.32), the weak and strong solution. Sketching
out their differences we should note that if we are only given the functions p(t,z) and
o(t,z) and ask for a pair of processes ((Xt, B:),F:) on a probability space (Q,F, P)
such that (2.32) holds, then the solution (X, B;) is called a weak solution. If further-

more the solution X; is constructed upon a given version of Brownian motion B; and is

14



F# —adapted, then is called strong solution.

2.4 The connection between stochastic differential
equations and diffusions

We shall henceforward establish the connection between stochastic differential equations
and diffusion processes assisted by the following theorems:

Theorem 1: Assume that 7(t) is a solution of
dn(t) = u(t,n(t))dt + o(t,n(t))dB(t) (2.36)

where coefficients satisfy the conditions for existence and uniqueness of solution. Then

n(t) will be a Markov process whose transition probability is defined by
P(t,z;5, A) = P(n,(s) € A) (2.37)
where 7, ,(s) is a solution of

() = o+ [ alu,ne ()du+ [ olu,n.(w)dBw) (2:38)

on the interval [t,T].
This theorem certifies that equation (2.36) is valid as a stochastic integral equation
in the sense of Ito. The following theorem clarifies the conditions under the process 7(t)
is actually a diffusion
Theorem 2: Let u(t,z) and o(t,z) be continuous in both arguments and assume
that for some K
u(t, o) + lo(t,2)* < K(1+|z*) (2.39)
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and that for each IV, there exists Ly with |z| < N, |y| < N for which

|/L(t,l‘) - #<t7y)| + lU(t"T) I U(t!y)l < LN IZL' - yl (240)

Then the process 7(t) as a solution of (2.36) will be a diffusion with diffusion coefficient
o?(t,z) and drift coefficient u(t, z).

Inversely a diffusion process satisfies the stochastic differential equation (2.36) only if
the requirements of the following theorem are met:

Theorem 3: Let £(t) be a diffusion process on [0, 7] with coefficients u(t,z) and
b(t, z) which satisfy the following properties

(i) p(t,x) is continuous in both arguments and for some K satisfies
la(t,2)| < K(1+ Jz]) (2.41)

(i) b(t,z) is continuous in both arguments and has continuous bounded derivatives
0/0t b(t, z) and 9/0z b(t, z), also 1/b(t,z) is bounded
(iii) there exists a function 1(z), independent of t and A, for which

Plz) > 1+ |z, Sup Efp§(t))] < o0 (2.42)

and
[ )Pzt + |+ [ 2Pt st + 4, dy) < w2, (2.43)
Sl +4))P(t, 33t + A, dy) < (@) (2.44)

Then there exists a Wiener process B(t) for which £(t) satisfies the stochastic differential
equation

de (1) = u(t, (1))t + [b(t, £(2))}2dB(2) (2.45)
In view of these theorems, the solutions of stochastic differential equations and dif-
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fusion processes comprise one and the same class of processes, under the already stated
conditions. Proofs of the theorems can be found in Gikhman and Skorokhod (1972),
Arnold (1974) and Friedman (1975).

2.5 Functionals associated with differential equations

We shall now introduce three problems concerning diffusions. During the presentation
of their solutions a number of important functionals will be discussed which apart from
their physical importance and extensiveness in the way of anticipating diffusions, they
are of great value in problem solving.

We assume for the pending problems a time homogeneous diffusion process { X (t),t =

0} which satisfies the following conditions:

1. The state space is an interval of the form [l, 7], (,7], [{,7), or (I,7) where —oco < I <

T < 00.

2. The process is regular in the interior of I.i.e.
Pr{T(y) <o</X(0)=2z}>0, I<zy<r (2.46)

where T'(y) is the hitting time of the value y

3. The process has infinitesimal parameters p(z) and o?(z) which are continuous

functions of x, [ <z <r

We also let a and b be fixed, with [ < a < b <, and note T'(y) = T,, and
T* =T,, =min{T(a),T(b)} (2.47)

the first time the process reaches either a or b. The problems are now concentrated on

finding the following quantities.
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e Problem A The probability that the process reaches b before a or

u(z) =Pr{T(b) < T(a)/X(0) =2z}, a<z<b (2.48)

e Problem B The mean time to reach either a or b

v(z)=E[T*/X(0)=1z], a<z<b (2.49)

e Problem C The mean value of the integral stated below
T‘
w(z)=F [/ g(X(s))ds/X(0)==z|, a<z<b (2.50)
0

where g bounded and continuous function.
Functions u, v and w, are correspondingly found to satisfy the following equations:

e Equation A

e Equation B
o} (z)— = ~1 (2.52)

for a < z < b and boundary conditions v(a) = v(b) =0

e Equation C
2
o*(z) e = ~o(z) (2.53)
= w

@)% +3
N dr 2
for a < z < b and boundary conditions w(a (b) =0

We observe that each equation A-C involve the differential operator L defined by

1

Lf(z) = pl=)f (@) + 50*(2) f" () (2.54)
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for f(z) a twice conditionally differentiable function on (a,b). For the purpose of solving

equations A-C we introduce the following functions

s(z)aEexp {— / “l2u(e) /02(5)]@} forl<a<r (2.55)

and

S@) = [ stman= [“exp{~ ["2ue)/o*)dc | dn (2.56)

Indefinite integrals are used since the results will prove to be independent of the lower
limits of integration. Function S(z) is called scale function of the process, while m(z),

which is given right away, is the speed density
m(z) = 1/[c*(z)s(z)] forl<z<r (2.57)
We also introduce the speed measure M which similarly to S is given by
M(z) = /I m(u)du (2.58)

Of course we expect then that dS = s(z)dz and dM = m(z)dz.
The L operator is proved by theory to be connected to the functions above through

the expression

_1d [d@
Lf(z) = 2dM[ 5 ] (2.59)

called the canonical representation of the differential infinitesimal operator associated

with the diffusion process. Conclusively equation A will be brought to

1 d |du(z)| _
= [-Zis_J =0 (2.60)

which by two succesive integrations will produce solution A

fora<z<b (2.61)



Proceding to equation C it will equivalently become

which will similarly produce solution C
w(e) =2{u(z) ['156) - SEm(©a(e)de + 1 - u(w)] [I5(6) - SlelmOale)ee
(2.63)

We can easily ascertain that problem B is only a special case of problem C for g(z) = 1
for all z, therefore by substituting g(¢) with 1 in solution C we obtain solution B

v(a) =2{ut) ['150) - s(Emie)eg + 1 ~ )] [[I5(6) - S@lmie)ac]| (264

2.6 Backward and Forward Equations and Station-
ary Distribution

For what follows we shall assume that {X(#),f > 0} is a regular time homogeneous
diffusion process on the open interval I = (I,r) with transition distribution function
P(t,z,y) = Pr{X(t) < y/X(0) = z}. The initial distribution is assumed to be concen-

trating at point z i.e.

1 ifz<y
P(0 = (" - 2.65
Oep={y yos? (265)
Furthermore it is assumed that the transition density function p(t, z,y) given by
dP(t,
p(t,z,y) = —(-d—w t>0 (2.66)
)

is continuous on (/,7). In the spirit of the previous section we shall produce a partial

differential equation for the function

u(t,z) = Elg(X(t))/X(0) = 2] (2.67)
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with g(z) bounded and piecewise continuous on I. Under mild conditions u(t, z) satisfies

the partial differential equation

ou ou 1, 0%
i p(z) 7% + i (m)@ (2.68)

with the initial condition u(0+, z) = g(z), where u(0+, z) =hlim0 u(h, z). If we specify

_ /L i<y
g(n) = (0, >y (2.69)
we acquire that u(t,z) = P(t, z,y). In this case equation (2.68) is formulated
oP(t,z,y) _ . OP(t,z,y) 1 ,  O*P(tz,y)
5 = u(z) 52 + 5 (z) 52 (2.70)

and refered to as the Kolmogorov backward equation, applicable fort > 0 and! < z,y < r.

As expected the initial condition attendant to (2.70) is

1 if x <
P0+,z,y)=( .. =Y

2.71
0, ifz>y (2.71)

The Kolmogorov backward equation is also satisfied by the transition density p(t,z,y)

thus

Op(t,z,y) o Op(ta,y) 1 5,  0%(tz,y)
o p(r)—ax + 50 (z) 502 (2.72)

for t > 0 and ! < z,y < 7. It should be noted that equations (2.70) and (2.72) do
not always admit unique solutions. This problem is actually connected to the boundary
conditions of diffusions studied later on in this chapter.

The transition density p(¢,z, y) also satisfies the forward or evolution equation which

admits
op(t,z,y) 107

B 58—@/5[02(y)p(t,3:,y)] - %[M(y)p(t,w,y)] (2.73)

The derivation of the forward equation is considerably more complex than that of the
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backward equation and exceeds the scope of the present review. It should however be
noted that very stringent assumptions have to be made that result in some cases the
non-fullfilment of equation (2.73) by p(t, z,y).

In the case of a regular homogeneous diffusion process a stationary density v (z)
exists in the interior of the state space I. This stationarity measure is the limit to which
the transition probability density eventually settles, regardless of the initial state of the

homogeneous process i.e.

lim plt,2,) = ¥(y) (2.74)

The stationary density is then given analytically by a formula involving only the scale

function and the speed density of the diffusion process as shown in the equation below

5(z) L
BeE T e

Y(z) = Cls (z)[C1S(z) + Cy) (2.75)

where Cy,C; constants. This is indeed an achievement since the actual density of the
homogeneous diftfusion, even for a protracted time perspective, is expressed through func-

tions of the familiar drift u(z) and diffusion o?(z) coefficients.

2.7 Boundary Behaviour of Regular Diffusion Processes

In order to attempt a classification of regular diffusion processes with reference to their
behavior near the boundaries [ and r of the state space I = (I,7) we can simplify the

necessary statements by introducing

1. The scale measure i.e. a function S[J] of closed intervals J = [c.d] C (I, 7) defined
by
S[J] = Sle,d] = S(d) — S(c) (2.76)



where S(z) the scale function already met. The similar notation is not coincidental,

since considering the definition of S(z), becomes obvious that
d
Sle.d) = [ s(€)de (2.77)
2. The speed measure M where
d
M[J] = Mle,d] = / m(z)de (2.78)

where m(z) the speed density.

We shall henceforward be concentrated on one of the boundaries, permit I, keeping
in mind that definitions concerning the other will be entirely symmetrical.

First of all if S(I, ] < oo and this criterion applies independently of z in (I, 7) then the
boundary [ is attracting. We clarify that S(I, b] =1¢i;?zl S[a, b]. Having as a starting point an
attracting boundary we move to the question: when this boundary is attainable, meaning
in finite expected time. This question is answered by the theorem that suggests that a
boundary is attainable if and only if lim [ S[a,£]dM(€) < co. Otherwise the boundary is
unattainable. Obviously such a bound(iallfy cannot be reached by our diffusion process. A
rough justification of the theorem stems by the fact that the lim [T S{a, £]dM (¢) measures
the time it takes our process to reach the boundary ! or an azﬁternative interior state b
starting from an interior point z < b. If we also define M(l, z] =1¢i}1111 M]a, z}, then the
requirements S(l,z] < oo and M(l,z] < oo establish the regular boundary behavior.
This represents the ability of the diffusion process to enter and leave this boundary. The
behavior on a regular boundary can range from reflection (for M (I, z] = 0), to the non-
regular case of absorption (M(l,z] = 00). For cases 0 < M(l,z] < oo in between the
behavior on the boundary is sticky, a term which corresponds to the strictly positive

duration spent at the boundary.
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Back to the absorbing case and speaking only for diffusions, i.e. processes which
exclude discontinuous trajectories, the boundary is called erit boundary. This term is
used to characterize state [ as a trap state from which the process can never escape thus
we claim to exit the process. An entrance boundary contrary is a boundary that cannot
be reached from the interior of the state space but we can consider processes that start
there. Such processes quickly move to the interior of the state space and never return
to the entrance boundary. The sufficient condition for a boundary to be considered as
entrance boundary is S(l,z] = oo and [ S[{, z]dM(£) < oo.

Our discussion on boundary behavior cannot be complete without the description
of the so called Natural Boundary (in the Feller sense). Such a boundary can neither
be reached nor be a start point for a diffusion process. It is comprehensible that such a
boundary is omitted from the state space. A boundary is natural when [ S(I,£]JdM(§) =
oo and [* S[¢, z]dM(§) =

A very helpful notion for the purpose of constructing processes with interesting bound-
ary behavior is the concept of local time. Examining the local time process at the bound-
ary provides us an additional tool of boundary behavior classification. Before mentioning
this classification let us first examine what is local time. If we define occupation time

L 4(t) of the set A up to time t as follows
t
) / Ls(X ())dr (2.79)
0
where 14 the indicator function of the set A, then the limit random variable
. 1
o(t, a) =1€11r(r)1 %L(a—e,aﬁ-s) (t), t>0 (2.80)

defines a family of random variables ¢(t, a) called the local time process. We should em-
phasize that local time ¢(¢, a) is a density and is not the same quantity as the occupation
of a point a,

Loy (t) / b (2.81)
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which is usually identical to zero.
According to the local time approach the boundary behaviors are combinations of

five basic types
1. absorbing barrier phenomenon,
2. reflecting barrier action,
3. elastic boundary structure,
4. sticky boundary complex,
5. jump boundary behavior and instaneous return processes

Our discussion on boundary behavior concludes with an example in which local time
¢(t,a) is used for constructing a process with one of the above boundary behaviors.
Specifically we shall briefly discuss the sticky boundary example for the endpoint [ of a
diffusion process {X (t),t = 0} on the state space [l,7). Using the notion of occupation
time, a regular boundary ! is said to be sticky when Lg;(t) > 0, for all ¢t > 0, where
X(0) = L. If we take Y (t) = |B(t)|, with B(t) a standard Brownian motion, then Y (¢) is
a reflecting Brownian motion. If also ¢(¢) = ¢(t, 0) the local time at the origin, we form

the additive increasing process U(t) with respect to Y'(¢)

U(t) =t + ko(t) (2.82)
where k is a fixed positive constant. We are able now to construct the process

[(s) =Y (U™ }(s)) (2.83)

wich inherits the state space [0, +00) of reflecting Brownian motion and the regularity of
the boundary point 0. As shown in Karlin and Taylor (1981, pg.257-258) the occupation
time functional Loy (t;T') is strictly positive for all ¢ > 0. This of course implies that the

barrier {0} of the I'(s) process is a sticky boundary.
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As a conclusive remark to this section we should point out that the knowledge of
the exact boundary behavior is crucial into determining the overall diffusion process
evolution, which clearly cannot be solidly attained only by the infinitesimal parameters
awareness. This issue along with others is elucidated in the following section of diffusion

examples.

2.8 Certain Diffusion Examples

We have already encountered the case of Brownian motion B(t) as a stationary Gaussian
process with independent increments. It is easy now to view Brownian motion as a regular
diffusion process on (—o0,+00) with infinitesimal parameters u(z) = 0 and o?(z) = o?
a constant, for all z. Dividing B(t) by o we built a Brownian motion process of variance
equal to one, called standard Brownian motion. If instead we add the trend ut to a
Brownian motion B(t) we will produce the Brownian motion with drift Y (t) = B(t) + ut.
The process Y (t) will have drift parameter 1 and variance parameter o and will satisfy

the equation

dY (t) = pdt + odW (t) (2.84)

i, o constants, o > 0, W(t) standard Brownian motion.

A couple of interesting cases of Brownian motion are the Absorbed and Reflected
Brownian motion. If X(t) a Brownian motion with initial value X (0) = z, x > 0 and 7
the first time it reaches zero then Brownian motion absorbed at the origin is called the

process Z(t) with
X(t), fort <7

2.
0, fort > (2:85)

2=

Correspondingly we define the reflected Brownian motion as a stochastic process having

the distribution of Y (¢) with

Y(t) = |X(t)], t>=0 (2.86)
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where the characteristic property of reflection is also met at the origin. These two
processes are defined on the state space [0,400) and both act like Brownian motion,
thus determined by the same p and o of the typical Brownian motion, until the level zero
is first reached. There we have an alternation to their behavior according to their specific
boundary conditions. We must here note that oftenly physical considerations dictate the

choice of the boundary conditions in a natural way...
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Chapter 3

Estimation of parameters

3.1 An introduction to kernel estimators

We feel that accounting for certain density and regression estimation methods in general
is a necessity in order to cope with the issues of nonparametric estimation of diffusion
processes’s coefficients and marginal density. One of the oldest and natural approaches
in the estimation problem is the naive estimator. For n observations X;, Xs, ..., X, of a

real variable X the naive estimator is bound to be

:1;-—X->

Jer=dl
T n = h
with weight function w defined by

o) _{ Lif ] < 1 52)

0 otherwise

It would help our perception if we could think of the naive estimator as a construction
of “boxes” of width 2h and height (2nh)~!, placed on each observation, that sum up to

the estimator.

The problems that arise by the stepwise nature of the former estimator can be over-
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come with the use of the kernel estimator. In such an estimator we replace the weight

function w by a kernel function K which satisfies the condition

/_ ” K(z)de =1 (3.3)

Usually, but not always, K is considered to be a symmetric probability function. In what
follows K will be a positive function that satisfies (3.3) along with

/ tK()dt=0  and / 2K (£)dt = ky # 0. (3.4)

The kernel estimator will unsurprisingly be

1 & z— X;
= — ; K ( ) (3.5)
where h is the window width, also called the smoothing parameter or bandwidth by some
authors. Similarly to the naive estimator, the kernel estimator can be considered as a
sum of “bumps” placed at the observations. The advantages of such an estimator are
obvious. Given that K is a probability density function it follows from the definition
that f will itself be a probability density. Even not so, f inherits all the continuity and
differentiability properties of the kernel K.

We should also note that the actual choice of the kernel K and the bandwidth A is
conducted on criteria of discrepancy measures’s minimazation. Such measures are the

mean square error (MSE) defined by

MSE.(f) = E{f(z) - f(x)} (3.6)
and the global measure of mean integrated square error (MISE) defined by

MISE(f) = E / (f (@) = f(@))2da (3.7)
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Elementary manipulations of the definitions above bring us to

MSE,(f) = {E f (z) - f(2)}* +var f (=) (3.8)

and

MISE(f) = / (E f (@) - f(2))2dz + / el (3.9)

Clearly MSE and MISE involve the familiar quantities of bias and variance into a min-
imazation problem in which a “trade-off” between the reduction of these two quantities
is necessary.

In view of the nonparametric estimators ,u and o that we provide in the following
sections, a small discussion on nonparametric regression is essential. The goal of regres-
sion curve fitting is to find a relationship between variables {X;}%, and {Y;}%., where X

is considered the explanatory variable of the Y; values. For n independent observations

{(Xi,Y:) }i the regression relationship is modeled as follows
Y, =m(X;)+e 1=1,..,n (3.10)

where = iIs a random variable denoting the variation of Y around m(X), the mean regres-
sion curve E[Y/X = z]. So the approximation of mean response function m, is actually

a problem of estimation of the conditional mean curve

m(z)=E(Y/X=z)= f—y%%—)y—m—y— (3.11)

where f(z,y) denotes the joint density of (X,Y) and f(z) the marginal density of X.
Keeping in mind that it is now more of our interest to weight the response variable Y in a
certain neighborhood of z, a nonparametric regression smoother of the following general

form arises

o, () le zj; Whi(2)Y, (3.12)
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If kernels are involved in the weights, the most popular estimator is the Nadaraya-Watson
proposed in 1964
- T Ki(z - X3)Y;
ms (z) = -1 21_1 h i/44
» (2) n 137 Ki(z — Xj;)

(3.13)

For a more detailed discussion see Hardle (1990) among others.

3.2 Density estimation

Let us consider once more the case of a regular homogeneous diffusion process {X;,
t € [0,4+00)}. We already know that the limit of the transition probability density, met
as Y(y) in (2.74), is actually the limiting density of the process. Supposing that the
initial density of X, p(z), is chosen so as to p(z) = ¥(z) for all admissible z, it results
that each X, has the same density p(z). The problem of interest is the estimation of p(z)
when the process is observed up to time t. For this purpose a kernel type estimator will
originally be examined.

Let K(z) be a bounded probability density on R and h be a bounded strictly positive

function on R, such that
1.  J]0ast — o0
2. v, = J§ hyds < o0, and
3. v, — 00 ast— oo.

For ¢t > 0, let
t
pe(zo) = 7[1/0 K [(zo = X5)/hs) ds (3.14)

be an estimator of p(zy). The asymptotic properties of the estimator p;(zg) are examined
by Prakasa Rao (1983). In theorem 6.3.1 page 328, P.Rao asserts that “if {X,, t €

[0, +00)} is a stationary Markov process satisfying the condition G5(s’, a) for some s’ > 0



and the initial density p(z) is bounded and continuous on R, then

E [pi(z0) — p(z0)]* — 0 as t—o00.” (3.15)

K(z) and h(z) are assumed to satisfy conditions (i)-(iii) stated above. In what follows
we describe the G5(s,a) condition and introduce relating notions. For each t € [0, +o0),

the transition probability operator H; of X is defined as follows
H.f(z) = E[f(X;) /| Xo=x], z€R (3.16)

with f any bounded Borel measurable function on R. We then define |H;|, to be

EY3(H,f)*
|Hily =  sup —rro (3.17)
T gErco=n EBVA(f?)
The transition operator H; is said to satisfy the condition Gs(s,a) if there exists s > 0
such that |H,|, <awith0<a < 1.

A wider family of estimators than the one introduced by (3.14) is also examined in

Prakasa (1983) whose exact form is

po(z) = { / t h(s)H[h(s)]ds}—l / " Hih(s)] K [X—h(‘s‘)—“’] i (3.18)

with h, H functions from Ry to Ry, h(s) — 0 as s — oo. For H(s) = 1 the estimator
above developes to (3.14). Strong consistency of the estimator is also proven under
explicit conditions stated in theorem 6.3.2 page 331 of Prakasa (1983)

An alternative estimator using delta sequences is proposed in Prakasa Rao (1979a).
This estimator generalizes the recursive estimator of a distribution’s density f that for a

random sample X7, Xs, ..., X, is provided by the formula

fu (@) =771 i hibn,(z — Xi) (3.19)

33



with 0 < h, — 0 as n — 00,50 that v,, = Y, h; diverges (e.g. h, =n7°,0 <s < 1).
For the better comprehension of the present estimator we recall the definition of a delta
family (as found in Prakasa (1983) pg305). A family {6:,t > 0} of nonnegative bounded
functions is called a delta family of positive type a > 0, if there exist A > 0,B > 0 such
that

1. |1 - [5, 6(z)ds| = O(t*)
2. sup{|é:(z)| : [z] = t°} = O(t*)
3. ||6ell oo 7= 00

The exact form of the estimator of p(z) as proposed in Prakasa (1979a) is

t

pi(@) =707 [ hls)bua (@ - Xo)ds (3.20)

where h(t) a nonnegative real-valued function such that A(t) | 0 as t — oo and h(t) is
locally integrable, i.e.,
. .
~(t) = / h(s)ds < oo. ¥(t) — ¢ as t— o0 (3.21)
0

It can be shown that p}(z) converges to the real function according to the

s i)t = 0 (1) + {10 [y o)) 20

under conditions identified specifically in Prakasa (1979a) or problem 5, Chapter 6 of
Prakasa (1983)

Density estimation for continuous time processes with application to inference for
diffusion processes is also conducted by Leblanc (1995) using wavelets. A wavelet is an
orthogonal system that can be expressed as an infinite collection of translated and scaled

versions of functions ¢ and ¥ called the scaling function and the primary wavelet function
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respectively. The function ¢(z) is a solution of the difference equation

d(z)= > ad(2z—k) (3.23)
k==00
with normalization
/_ ” $(e)de = 1 (3.24)
while function v (z) is defined by
Y(z)= > (—Dfcorne(2z — k) (3-25)
k==oo

The coefficients c;, are called the filter coefficients and their choice determines the wavelet
system. The wavelet system expansion is actually a tool used to decompose a function
into a set of weighted basis functions that are localized in time and frequency. It is
analogous to the Fourier series expansion which represents a signal by a summation of
complex sinusoids weighted by a set of coefficients. Therefore engaging wavelets to the
problem of estimating the marginal density f of X; over an interval [-K, K] of the

observed sample path {X;,0 <t < T}, produces the following expansion

fI([-K,K]) = Z ajo,k¢jo,k + Z Z ﬁj,k"abj,k (3.26)
keK;, j>jo kEKj,
where
b ,ox(z) = 2°72¢(2% 1 — k) (3.27)
and
¥, = 2(27z — k) (3.28)

By orthogonality of the wavelet basis, it follows that

aine = [ F@)054(@t) and  Bix= [ f();.(do) (3.29)
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Leblanc (1995) considers the estimator

fr@) = 5 ok b3a(a) (3.30)
kGKjo
with
- T
Qjo k= '11?/0 B0 1(Xs)ds (3.31)

2
and obtains the upper bound for E

(- x50
Advantages and disantvantages of density estimation with wavelets were discussed by

Walter and Ghorai (1992). They indicated that application of wavelet bases give better

asymptotic properties of the estimators but, for small samples, they have little advantage

over the kernel methods and do not give as close an approximation to the true density.

3.3 Drift and diffusion parameters estimation: Non-

parametric approach

Following the historic progression of research concerning the nonparametric estimation
of diffusion processes’s coefficients, we shall first review the procedure followed when the
sampling observations are continuous. So beginning with the usual considerations of a

diffusion process X;, that satisfies the stochastic differential equation

with initial condition Xy = X, we suppose that X, can be observed continuously through-
out the time interval [0, T]. Observations of this kind enable the true diffusion function

to be determined, at least for states z visited by X; during [0, T}, through

2n t
Jim Y (jan = Xgoa—)? = [ 0*(Xo)ds (3.33)
Jj=1
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which holds almost surely for all t € [0,T], where {¢; = jt2™,j = 0,1,2,...,2"} is a.
sequence of divisions of the interval [0, T'] such that max{(t; — ¢;_;),1 < j < 2"} - 0 as
n — oo (see, e.g. Brown and Hewitt, 1975). Based on the fact that u(X;) is the following
conditional expectation limit

u() =Jimg B {22 3 0) = . (3:34)

Geman (1979) considered the commonsense nonparametric estimator of the drift function

of the following form:

pa(@) =071 3T (Ko, — 2) (335)
=1
where 0 < 7; — 0 as ¢ — oo and {t;} is a sequence of random times defined by ¢; =
inf{t >0: X; =2z} and t;y; = {t 2 t; + 7; : Xi = z}. Geman (1979) proved the
consistency and asymptotic normality of this estimator.
Banon (1978) proposed an alternative nonparametric procedure to estimate point by

point the function p(z) when the function o(z) is known or when o(z) is unknown but

takes a constant value. Banon (1978) considered the relation found in Wong (1971)

5(c°p) = pp (3.36)

that explicitly relates the pair (u({z),o(z)) to the limiting density p of the X, process,
when it exists. Therefore estimation of u(z) is related to estimation of p(z) and p'(z)
discussed above. Banon (1978) first assumes for reasons of simplicity that the process
{X.} is stationary with probability density function p and satisfies the condition G,(s, a)
defined above. He then estimates o2 when o(z) is constant. Considering that

o*(z) =lifm %E[(XHS CX)YX,=1|, zeR, >0 (3.37)

t—0
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Banon (1978) proposed the estimator

1
—(Kerrs = Xi,)* (3.38)

1

n—i

1

2
On

n
=1

with {7;} a bounded sequence of positive numbers tending to zero and {t;} be such that

t; = 0and t;+7; < tiy1, i = 1,2,.... Under the initial condition EX* < oo , ¢2 is proven

to be a quadratic mean convergent estimate of o2, that is
ol 1T 52, as n — 00 (3.39)

The described estimate is recursive, i.e., is the solution to:

1
= T 0 + ;T_(Xtmtrn - X,)? (3.40)

n

The starting point for Banon to estimate the drift u(z) is equation (3.62), the origin of
which is explicated in pages 41 and 42 of the present dissertation. Banon sets ¢(z) =
p (z)/p(z) and proposes for q the following estimate

|6 7, K (22 ds|

qmm=[ﬁin%%ﬁ@+4 (3.41)

with K;(z) a bounded probability density function, Ks(z) a continuous probability den-
sity function of bounded variation such that K. ; is bounded, £ > 0 fixed and h; bounded

positive function such that
1. hy | 0ast — oo
2. 9, = [y hods < 00
3. 4, = o0 as t — oo and

4. h?y, > o0 as t — oo
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If p () is continuous and bounded then the estimate is proven to converge in proba-

bility to the true quantity, thus
qi(zo) = q(zo)  ast— o0 (3.42)

(Proof can be found in Banon (1978) Theorem 5.1 page 393). It is easily anticipated at
this point that the suggested estimate for the drift u(x) is

1 ’

pe(To) = 5[02 (o) + 0?(20)q:(x0))] (3.43)

for 0%(z) known. Under the conditions assuring the convergence of ¢, it is proven that
(o) 2 p(z0), ast — 00 (3.44)

For o(z) unknown but constant replacing in (3.43) the estimate given in (3.38) provides

the estimate u, ,(z) with
1
fir (o) = '2'0121%(370) (3.45)

Under the conditions stated for ¢(z) it is proven that
n(zo) o plzo), 8 t,m— 00 (3.46)

It is obvious though that in most practical situations continuous sampling of the
stochastic process is impossible. This comes as a consequence of slow sampling rates
comparing to rapid characteristic dynamics of these systems. So the frequently aris-
ing question in practical applications is how to estimate the parameters of a stochastic
differential equation from discrete time observations.

Florens-Zmirou’s (1993) paper was a pioneering one in nonparametric estimation with
discrete sampling observations. She is concentraded in non-parametrically estimating

the diffusion coefficient of a diffusion process using discrete observations X, at times
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(t1,t2, ..., tp) Of the finite time interval [0,7]. It can be assumed that 7' =1 and ¢; = i/n
without loss of generality. Primarily the local time ¢(t,z) of X in z during [0, t] is
estimated by developing the discrete approximation

it
qu oyt (Xi/m) (3.47)

ﬂ;—

o™ (t,z) =

with h, — 0 and nh,, — co. Let be noted that regarding local time we use terminology
introduced in Section 2.7 of the present paper instead of the one found in Florens-Zmirou
for reasons of continuity. The ¢™(t, z) approximation is proved to converge to the local
time ¢(t,z) in the L? sense for nhi tending to zero as n tends to infinity. Under the

same conditions it is also proven that

v, 0%(2)4(t,2) (3.48)
with V"™ (z) defined as follows
(n) 1 [nt]-1 )
Vo) = gp 2 Lyt sy = Xl (3.49)
Vi (z) =v™(z) and VO(0)=V™ (3.50)

These propositions allowed Florens-Zmirou to conclude that for (h,) such that nh? tends
to zero the S,(z) with
S35 T, -] <hn) Kty = Xl

Sp(z) = ~ (3.51)
(@) L= lp|x,, —a|<ha)

is a consistent estimator of o2(z). An equivalent approach to the estimation of ¢(t,z),

also mentioned in Florens-Zmirou (1993), is the familiar kernel estimator

[nt)

¢M(t, z) ————ZK<

) (3.52)

TL
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As we shall see forward Jiang and Knight (1997) advanced the idea of kernel estimator in
accordance to Florens-Zmirou (1993) suggestions and preceding context. Still in Florens-
Zmirou (1993) a finding of greater significance is also formulated and that is the derivation

of asymptotic distribution for S,,(z) epitomized in the following theorem.
Theorem 1 If nh3 tends to zero, then
[ Sn(z)
converges in distribution to ¢(x)~Y/%Z, where Z is a standard normal variable independent
of ¢(z). (By ¢(z) we note ¢(1,z) (with1=T))

Stanton (1997) illustrated a procedure for nonparametrically estimating both drift
and diffusion functions. Beginning with the usual considerations of a diffusion process

X, that satisfies the stochastic differential equation
dX, = p(X,)dt + o(X,)dB, (3.54)

with initial condition X, = X, Stanton wrote the conditional expectation F;[f(Xi+a,)]

in the form of a Taylor series expansion

1 1
E[f(Xeran)] = F(Xe) + LF(Xe)An + Esz(Xt)Afz + .t jv—,LNf(Xt)Aﬁ’ +0(A7)
(3.55)
A, is the sampling interval between the n observations of X; over the time period [0, T']

ie. A, = Z while L is the already known infinitesimal generator of the process X;

1 62

Lf(@) = 5= F(@)(z) + 5 505 @) (2) (3.56)

Assuming f(z) = z, Stanton (1997) used the N-W kernel method to provide the following
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approximation for p(z) :

. (2) T, K (%4272) (Xrnan = Xia)
b Z)=

T — (3.57)
iAn—Z

A 2K (502)
where h,, is the smoothing parameter of the nonparametric estimator. Actually ,u} (z)
is the kernel regression estimator of the first order approximation of u(X;) provided by

Stanton

BXe) = 5Bl Xers = X+ 0(A0) (3.58)

This approximation had already been used by previous authors, such as Chan et al.
(1992), but Stanton’s contribution lies at the provided sequence of approximations for
p(z) with (3.58) being only the first.

In order to construct the approximations for the diffusion parameter o, Stanton used

the f(z,t) = (z — X:)? and concluded with a series of approximations first of which is

o(X0) = \/AiEtKXHA ~ X7+ 0(An) (3.59)

Therefore the corresponding estimator is

n-—1 2
S K Xian—2 X = Xia,
oy (X)) = | =2 ( hnn_2 ( e ° ) (3.60)

The family of approximations estimated by Stanton (1997) converge to the true functions
at a rate A, where A is the time between successive observations, and k is an arbitrary
positive integer. Stanton’s (1997) approach is appealing due to the simplicity of the sepa-
rate estimation of o and u but still problems concerning these estimators were identified.
Chapman and Pearson (2000) applied Stanton’s procedure to simulated sample paths of

a diffusion with linear drift, namely the Cox-Ingersoll-Ross Squared root Diffusion, and
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detected nonlinearity of the Stanton estimator. This spurious nonlinearity was concluded
to be caused by “mean reversion” and small sample at the boundary which as expected
worsened the diversion from the true drift near the boundary regions. Fan and Zhang
(2003) continues the discussion launched in the two previous papers trying to answer the

following essential questions:

e Do higher order approximations outperform their lower order counterparts?

e Can reasonable and formal procedures be found in order to help determine whether

the observed nonlinearity in the drift is real or due to chance variation?

In order to facilitate the first question Fan and Zhang (2003) built explicit formulas
for the variance and bias of the drift and diffusion estimators with regards to the order k&
and notice that though asymptotic bias is indeed reduced, asymptotic variance escalates
nearly exponentially as k grows. The variance inflation phenomenon applies to parametric
modeling as well and thus is not only an artifact of nonparametric fitting. As far as the
second question is concerned it can be brought to a hypothesis testing problem with
ametric mode! null hypothesis against a nonparametric alternative; the statistic
used for the particular problem by Fan and Zhang was the Generalized Likelihood Ratio
(GLR) developed by Fan et al. (2001)

As illustrated in (2.73) p and o are participants of the forward equation which by
proper manipulations can be brought to

d2
dz?

d

(o*(z)v(z)) = 2= (ul(z)id(=) (3.61)

with ¥ (z) the marginal density. Equation (3.61) shows a relationship between the drift,
the diffusion and the marginal density function of the diffusion process. Integrating

(3.61) with the boundary conditions lim o*(z)y(z) = 0, lim ¢¥(z)y(z) = 0 and
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lim p(z)y(z) =0, we obtain

Z—00

ue) = 3 |28+ 20 L (3.62)

as Banon (1978) illustrated. This is the formula that permitted Jiang and Knight (1997)

to estimate the drift coefficient function with discrete observations and avoid the extreme

sensitivity to the sampling intervals and the length of the total sampling period that
emerges by the use of formula (3.35).

More explicitly Jiang and Knight (1997) considered the local time estimators (3.52)

proposed by Florens-Zmirou (1993) and thus constructed the estimator S,(z) of o2(z)

that is given by the following formula

n—1 2
S K Xian—2T X = Xia,
So(z) = =2 ( ”"nj( erian ~ Xian) (3.63)
A, T K (Xiaa=z)

i=0

They proceeded to proving pointwise consistency and asymptotic normality for their
diffusion estimator in a theorem very much alike to Florens-Zmirou’s theorem 1 of the
present section. The variance of S,(z) is also provided in the same theorem by the

consistent estimator

V [Su(e)] = —nl®)
T K (Fan=2)

(3.64)

By utilizing the kernel method instead of the naive method, Jiang and Knight (1997)
tried to achieve better performance for their estimators on the basis of integrated mean
squared error (IMSE), following the conclusions of Kumar and Markman (1975) derived
from their Monte Carlo studies; furthermore they avoided the discontinuity of the naive
estimator which is a serious drawback when constructing the nonparametric drift function
estimator since derivatives of the diffusion estimator are involved.

The next step for Jiang and Knight (1997) was to suggest a non parametric estimate

of p(z) based on equation (3.62) and a proposition of Banon and Nguyen (1981) con-
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cerning a strongly consistent estimator of Q(z) = v¥'(z)/¢¥(z) with continuous sampling

observations. So, providing, as an intermediate step, the following consistent estimator

of Q(z)

q'n(m) = ‘.=n—1 (365)
L)

from discrete sampling observations, Jiang and Knight (1997) suggest the following esti-
mate for drift

. hn hn
o (m)=% ——ds(;‘im)JrSn(x)ii?_l (3.66)
K XiAn—T
R (=)

which is proven to be a pointwise consistent estimator (this conclusion is valid under the
explicit conditions A1-A8, see Jiang and Knight (1997))

Li and Tkacz (2002) proved that the nonparametric estimator /1‘1 (z) of the drift
function proposed by Stanton (1997) is not consistent and provided the convergence
rate of Jiang and Knight (1997) estimator ,ué (z). These essential conclusions lie in a
single theorem of Li and Tcacz (2002) that assumes growth and Lipschitz conditions,
stationarity of the process and restrictiveness to the amount of the allowed dependence

in the observable sequence. The basic results of this theorem are

L VAl (2) = w(@)] = N [0, 58 [ K*(u )du] in distribution
2. if nh3 — 0 and nh — 0, then /nk3[y, (z) — u(z)] = O »(1)

3. if nh3 — 0 then /nh,(S,(z) — 0%(z)) = N (O, ZJ(%Z fKQ(u)du) in distribution

Bandi and Phillips (2002) in their recent paper find it more useful for empirical
applications that a nonparametric estimation method for diffusion processes with non-
stationary behavior is constructed. Instead the substantially milder assumption of rec-
curence is the new identifying condition. Reccurence requires that the continuous tra-
jectory of the process must visit any level in the permittable range of values an infinite

number of times over time.



Before providing their estimators Bandi and Phillips (2002) discuss of course the
requirements of their model but also introduce a standardized version of the conventional
local time ¢(t, a) that is defined in terms of pure time units. A natural way to define this
local time, called chronological local time for the first time by Phillips and Park (1998),

is the following

¢@®=?%W“@ (3.67)

Assume a process X: in the time interval [0,T] for which n equispaced observations

{Xan Xonn 1) .y Xna, o} are available (A, r = T /n ). The proposed estimators now

are
XianT— a8, 1)—1
; _ LK ( ot I) (mn,T(iAi,T)An,T N L T —Xt(iAn-T%'])
P = n K(an;r—z)
i=1 hn, T
n Xs' n, T~ -
i=1 K( inz m) Hn T (XiAn,T) (3.68)
n Xian,T—Z )
i_-lK( hn,T )
for the drift and
r { XianT—T —Mn, (iAm Y=1r+- = 2
2 _ Link ( e )(mn,T(mL,T)An,T Tize " Xttt )‘f“An»Tb]?)
0 (nT) = n oI XiAnT—T
=1 ( hn, T )
-2
n Xi nT—Z
I K( i"; ) TnT (XiAn,T) (3.69)
Si K (F5e5)

for the diffusion function. K(z) is a kernel function with properties already discussed
at section 3.1, while {t(¢A, r);} is a sequence of random times defined in the following
manner:

tidnz)o = inf{t > 0: | X, — Xia, ;| < enr} (3.70)

and

t(1An1)j41 = inf{t > t(ilnr); + Anr

X — XiA,I‘T’ < en1} (3.71)
The number m,, r(iAn, 7) < n counts the stopping times associated with the value X
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and is defined as
mn T ZA” T Z I JAn‘T—En,TijAn,T'l"En,T) (XiA'n,T) VZ S n. (3'72)
i=1

The quantity €, r is a bandwidth like parameter that is taken to depend on the time
span and on the sample size. The first conclusions that are derived concern the case of
simultaneous increase in the sampling frequency and the observation period, mathemat-
icaly speaking n — 00, T — oo and A, = T /n — 0. By using such observations the
estimators ;;(n,T) and o?(, Tyaim to reconstruct as well as possible the path of the process
in terms of their true analogs. As far as the ;l(n,T)is concerned it is proven to converge

to the true function with probability one and that its asymptotic distribution is of the

Veur & (1,0 {ir) @) ~ (@)} - N (0, Ko (a)) (373)

where K3™ = § [%, If,1<13da = § if by 1 = o(en,r). The explicit conditions under which

form

the convergence holds are presented in Theorems 2 and 3 of Bandi and Phillips (2002)
along to the asymptotic bias of the drift estimator. Promptly we can notice that these
conditions are concerning the speed that n,T diverge to oo and A, 1, hpr and e, 7
converge to 0 in relation to ¢ (T, z). Moving forward to the asymptotic theory for the
diffusion estimator, Bandi and Phillips prove its convergence to the true function with

probability one and find its asymptotic distribution to be of the form

EnT ;5 (T7 I)

A {éaw (z) — az(x)} 4 N(0,4K3M0% (z)) (3.74)

Again the explicit conditions are described in Theorems 4 and 5 of Bandi and Phillips
along to the bias term of the diffusion estimator.
Analysis is also conducted for the fixed T case which consequenses the non iden-

tification of the drift function. Contrary the features of the diffusion function can be
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better reflected by the local dynamics of the underlying continuous process. This results
a meaningful definition for the diffusion function estimator even over a fixed time span of
observations, a result a(fcordant to other authors as Geman (1979). The limiting distrib-
ution of the estimator az(n'T)is then established as a Mixed Normal with principal terms
actually determined by the relation the observation rate A, r to the spatial bandwidth
€n,r. If Ap 7 is small relative to e,,7, so that nej » — oo, then the bias effect dominates
the asymptotics. If the spatial bandwidth ¢,  is small relative to the observation interval

and ne?

a7 = 0(1) , then the bias effect is eliminated asymptotically and the martingale

effect governs the limit theory. Rates of convergence for ;At(n,T)and 0%, ryare discussed
as well as the case of single smoothers p, ryand a_z(n;_p)already met in our discussion of
(3.57) and (3.63). Relation to Florens-Zmirou (1993) is also commented by Bandi and
Phillips, drawing attention to the resemblance between the limiting distribution of their
diffusion estimator and the one provided by Florens-Zmirou (see Theorem 1 of present
section) for choices of €, r and h,r that make the bias term negligible.

Moloche (2001) advances the methodology introduced by Bandi and Phillips (2002)
using the local polynomial kernel approach to estimate the drift and diffusion function of
recurrent scalar diffusion processes. Bandi and Phillips’s theory is accordingly extended
in three directions: first the decrease of the small sample bias due to the implementa-
tion of the local polynomial approach is illustrated; second, the convergence rates are
further analyzed and their dependence on infinitesimal coefficients is explicated; third,

the positive recurrent case is comprehensively studied.

3.4 Drift and diffusion parameters estimation: para-
metric approach

We consider once more the diffusion process X, satisfying the time-homogeneous stochas-

tic differential equation

dXt = /,L(zYt)df + O'(Xt)ng (375)
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where B, is a standard Brownian motion. In estimating the functions x and ¢ in equation
(3.75) the usual approach remains the specification of parametric forms for the functions
p and o and subsequently the estimation of the values of the parameters existing in
them. Relating examples can be located in Econometrics by Cox, Ingersoll, and Ross
(CIR) (1985), Vasicek (1977), Brennan and Schwartz (1979, 1982), and Chan , Karolyi,
Longstaff and Sanders (CKLS) (1992).

The first paper to deal with parametric estimation of the coefficients of a stationary
diffusion process from discrete sampling observations is the one by Dacunha-Castelle
and Florens-Zmirou (1986). The measure of the amount of information lost due to
discretization is also provided in the particular paper. Dohnal (1987) also considered
the parametric estimation of the diffusion term and proved the local asymptotic mixed
normality property of its likelihood function. He then used the demonstrated property to
achieve better results than those obtained by the use of formulas (3.33) and (3.35). The
method used in both papers is the expansion of the transitional density of the underlying
Markov process for small changes in time.

Given functions g and o the transition density from value z to value y in period
t, p(t,z,y), must satisty the Kolmogorov backward equation (2.72) and the forward
equation (2.73). In principle, for a given parametrization of 1 and o, we can solve equation
(2.72) for the conditional density p as a function of the parameters, then use maximum
likelihood to estimate the model’s parameters. Lo (1988) for example derived the ML
estimation method of the parameters based on the Markovian properties of a diffusion
process with jumps. Another example can be found in Pearson and Sun (1994)) Pedersen
(1995) suggested an approximate maximum likelihood (AML) parameter estimator for
multidimensional diffusion processes, but his framework was purely theoretical.

Unfortunately, except in a few cases such as the one confronted in Pearson and Sun
(1994). equation (2.72) can only be solved numerically, making implementation of max-
imul likelihood extremely inconvenient. Hansen’s (1982) Generalized Method of Moments

(GMAI) can often be used instead of full Maximum Likelihood, either when the full like-
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lihood function is too complicated or time-consuming to calculate, or where we wish to
specify only certain properties of the distribution, rather than the full likelihood function.

Duffie and Singleton (1993) use an “indirect inference” approach to estimating non-
linear stochastic differential equations called simulated GMM. They use simulation to
calculate arbitrary population moments as functions of the parameters of the process
being estimated. The simulated moments are subsequently compared with the sample
moments estimated from the data and the minimization of this difference provides the
parameter estimates.(see also Gourieroux, Monfort, and Renault (1993)). Monfort (1996)
reviewed methods of indirect inference and focused on misspecified models.Gallant and
Tauchen (1994) also use simulation, generating moment conditions from the score func-
tion of an auxiliary (quasi) maximum likelihood estimation. Hansen and Scheinkman
(1995) show how to derive analytic moment restrictions from equation (3.75) using the
infinitesimal generator £ of X;. For example, their first class of moment conditions (C1)
can be obtained by noting that, if X, is stationary, F[¢(X;)] must be independent of
calendar time for any function ¢. This implies that its unconditional expected rate of

change must be zero, i.e.

' 1 »
Cl: E[L¢(X:)) = El (Xo)u(Xe) + 5@5 (Xt)UQ(Xt)] =0 (3.76)
While these moment conditions are less computationally intensive than those of Duffie
and Singleton (1993) or Gallant and Tauchen (1994), they do not take advantage of all
of the information contained in the discretely observed data. An alternative approach is
to use GMM with approximate moment conditions. A well-known example is Chan et

al. (1992). In estimating their continuous-time interest rate model,

dry = (a+ fOry)dt + or"dB; (3.77)
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they use approximate conditional moments of the form
Et(5t+A) =0 (378)

Ey(&,,) = oA (3.79)

where ;4o = ri4a—1¢—(a+0r;)A. Despite the approximate correctness of these require-
ments, this approach is, according to Stanton (1997), the simplest of all to implement
and likely to introduce small approximation errors for reasonably frequent data available.
Still Ait-Sahalia stands with criticism towards discretization methods as the one in Chan
et al.. He points that although this method is commonly used, the discretization of the
model involved rises considerations about the method’s practical value; discretization-
based methods implicitly assume that more data means more frequent data on a fixed
period of observation, an assumption hardly matching real data deliverance.

It is certain that parametric estimators of drift and diffusion coefficients of a diffusion
process are desirable for comprehensing the mechanism that generates the process. The
true weakness of parametric estimators is misspecification a problem deteriorating when
no apparent reasons can safely permit the selection of a model over another. The an-
swer of recent research to the misspecification problem is the adoption of nonparametric
estimation techniques. The nonparametric estimator is purely data driven and therefore
avoids the specification of arbitrary functional forms for 4 and o. We have already revised
a number of nonparametric estimators for both the unknown coefficients u and o.

Still distinguished researchers of the field created estimators that combined the para-
metric and non-parametric approach into a new semi-parametric approach. Banon’s
(1978) approach, analytically described in the previous section, can be considered as

such. Briefly resuming, Banon (1978) integrated equation (3.61) and obtained

—[o*(z)y(x)] (3.80)
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which allowed him to estimate the drift nonparametrically, given a nonparametric esti-
mate of the stationary density 1, while ¢ was known or constant.

Symmetricaly to Banon, Ait-Sahalia (1996a) assumed a linear drift,
w(z,0) = Bla — z] (3.81)
with 8 = (a, )’ which by use of the backward Kolmogorov equation derives the conclusion
E[Xyn/Xi]) = a+eP2(X, - a) (3.82)
Since ordinary least squares (OLS) clearly identifies the parameters v and ¢ in
E[Xein — X/ X)) = + 6X, (3.83)

it is comprehensible that o and 8 of (3.82) are indirectly identified. The thus identified
6 permits the non-parametric estimation of the diffusion function ¢? since a marginal

distribution v of the diffusion process is set. This is feasible due to the formula

o¥(z) = —— /0 " (e, 0)9(u) du (3.84)

which can be obtained by integrating (3.80) once more. More explicitly in order to obtain
an estimate of o?(z) we replace 6 and ¥(z) in (3.84) by their consistent estimators.

Starting with ¢ (z) the smooth density estimator

L Xi) (3.85)

v =3 K (S

n i=1

can be formed by our data {X;,7i = 1,...,n} based on a kernel function K(z) and band-

width h,, while we provide an OLS estimator for § = (o, 3)’ by transformating the OLS
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estimate of (v,8) in (3.83) as follows:

a=-—v/§ and B=-In(1+06)/A (3.86)

As far as the asymptotic distribution of the described estimator o2 is concerned, Ait-
Sahalia (1996) presents his findings in the following theorem (see also Ait-Sahalia (1996)
page 535 and Appendix 1 page 550)

Theorem 2 Under assumptions AI-A5 (see Appendiz 1 in Ait Sahalia (1996)):

o The estimator o2 is pointwise consistent and asymptotically normal, i.e.

Jhn(e? (2) = 02(z)} % N(0, Via(a)),

with asymptotic variance
o0
Vale) = { [~ Kwdu} o'(z) /(@)
—00
e The asymptotic variance can be consistently estimated by

Vor (@) ={ [ Kwfdu} o (2)/ ¥ (@)

o At different points  and ' in (0,00),0% (z) and o® (') are asymptotically inde-

pendent.

Part (iii) of the theorem'is typical of pointwise kernel estimators (see Robinson (1983))
and is useful to know for inference purposes. The consistent estimator of the pointwise
asymptotic variance makes it possible to construct pointwise confidence intervals for the
diffusion coefficient’s estimate.

Apart from the use of a nonparametric estimate, it is also obvious that Banon (1978)

and Ait-Sahalia’s (1996) approach is also alternative to the common parametric approach
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as met in Vasicek (1977) or Cox, Ingersoll, and Ross (CIR) (1985) in more than one
way. The joint parameterizations of (u,c?) adopted in the literature of fully parametric
estimation, imply specific forms for the marginal and transitional densities of the process
that have to be accepted by the researchers with no further discussion. Instead the
semi-parametric approach discussed advances towards the opposite direction; relying on
the equivalence between (u, 0%) and densities it starts with non-parametric estimates of
these densities and reconstructs the drift and diffusion of the continuous time process by
matching these densities.

Finally we should not overlook the Bayesian analysis that was implemented by re-
searchers to discretely observed diffusion processes. Roberts and Stramer (2001) as well
as Elerian et al. (2001) use Markov chain Monte Carlo algorithms in order to sample from
a properly transformed diffusion and subsequently draw conclusions about the likelihood
function, the marginal likelihood and the parameters of the original diffusion process. The
transformation of the diffusion’s values aims at breaking down the dependency between

the diffusion’s volatility and the missing paths connecting two data points.
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Chapter 4

Conclusion

This dissertation studies essential probabilistic and stochastic theory of diffusions and
reviews the identification and estimation problem as confronted by various authors. It
seems unavoidable that the extent of such an undertaking leaves plenty of room for
overlooked issues. Such an issue can be considered the derivation of the exact confidence
intervals that the drift, diffusion and marginal density estimators lie within, although
in most cases the exact limiting distribution of these estimators is provided. Diffusion’s
invariant distribution is also estimated only through nonparametric methods with any
parametric approach left aside.

A natural continuance of the present effort rests with the multidimensional case of the
stochastic process X;. More than a few researchers were concentrated in the multivariate
case and important bibliography has been formatted, even not so extensive as the one
concerning the univariate case. Density estimators for the case are revised for instance
by Prakasa (1983) and Yamato (1971) while Genon-Catalot and Jacod (1993) estimate
the diffusion coefficient matrix. Basawa and Prakasa (1980) include a broad discussion
on multidimensional diffusion processes in their book. Bandi and Moloche (2002) re-
cently discussed kernel methods for multivariate diffusion processes assuming only Harris
recurrence instead of stationarity as a distributional property.

Separate from the issue of multidimensionality confronted in the particular paper,
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the recurrence consideration seems to be a promising area for research. Recurrence is
an assumption allowing nonstationary behavior to the process and thus substantially
milder than the extensively used stationarity assumption for the marginal process. Since
in many empirical applications cross-restrictions delivered from the existence of a time-
invariant marginal data density are unnatural to be imposed, work on reccurence seems

to produce developments towards the right direction.
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