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Abstract

Can a single policy truly serve the diverse needs of Europe’s regions, or does its impact unfold
within the hidden nexus of place and time? The asymmetrical distribution of economic growth and
development across European regions has been a persistent challenge for the European Union, de-
spite decades of regional subsidy programs aimed at fostering convergence. The average treatment
e�ect (ATE) of these have traditionally been studied through econometric approaches, such as
as Di�erence-in-Di�erences (DiD) and Two-Way Fixed E�ects (TWFE). However, these methods
not only su�er from bias in staggered adoption settings or when treatment e�ects vary over time,
but also they fail to capture heterogeneous treatment e�ects. This thesis aims to address these
limitations by evaluating policy implementation through Generalized Synthetic Control (GSC)
and Causal Forests. First GSC validates the global e�ect of EU regional subsidies, providing a

exible counterfactual framework to assess overall program success. Complementing this analysis,
Causal Forests are employed to uncover the signi�cant variation in those e�ects across regions,
identifying which regions bene�t the most and which remain una�ected. The empirical results
reveal substantial heterogeneity in the impact of EU regional subsidies. Causal Forests demon-
strate di�erent levels of treatment e�ects across regions, despite the positive average e�ects, as
some regions experience great bene�ts while others show minimal responses. These insights shift
the focus to understanding for whom and under what conditions the subsidies are most e�ective,
rather than solely evaluating the average impact of the subsidy. In addition, this thesis contributes
to the methodological literature by illustrating how machine learning methods can complement
traditional econometrics, to address long-standing issues in causal inference in high-dimensional
and noisy data environments, while improving precision policy-making, for more equitable and
impactful policies across EU regions that respond to their unique realities.

Keywords: Causal Inference, Machine Learning, Generalized Synthetic Control Method,
Causal Forest, Heterogeneous Treatment E�ects

\All events seem entirely loose and separate. One event follows another; but we never can
observe any tie between them. They seem conjoined, but never connected."

| David Hume

\It is far more important to know what person the disease has than what disease the person
has"

| Hippocrates
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1 Introduction

Few people are eager to embrace determinism, as it challenges the comforting idea of free will. Our
natural instinct is to resist it. Determinism argues that everything in the world happens through a
chain of cause and e�ect, governed by universal natural laws. For every cause, there is an e�ect and the
better we understand these causes and their interconnections, the more accurately we can predict what
happens next (Hoefer, 2003). Probability, on the other hand, is our tool to deal with the uncertainty
that arises when we don’t know all the causes (Hacking, 2006). To the world, things either happen or
they don’t|there’s no chance. But what about our choices? Determinism suggests they are also part of
this causal chain, an illusion of free will. This concept of determinism has shaped philosophical thought
for centuries, in
uencing Galileo, Descartes, Newton, Spinoza and Laplace (Drake, 1978; Miller, 1983;
Smith, 2007; Kisner, 2001; Laplace, 2012). Laplace famously proposed that if we knew the complete
state of the universe at any given moment, we could predict everything that follows. But reality is far
more complex. We rarely, if ever, have complete information, which is why probability and statistics
have become such crucial tools in understanding cause and e�ect. David Hume questioned whether we
could ever truly observe a cause, or whether we were simply observing patterns of regularity (Hume,
1748). John Stuart Mill, meanwhile, focused on methods for identifying causes through counterfactual
reasoning|a cornerstone of modern causal analysis (Mill, 1843). As these philosophical ideas evolved,
so did the tools for investigating them scienti�cally. By the early 20th century, Pierre-Simon Laplace,
Francis Galton and Karl Pearson were formalizing probability theory and laying the groundwork for
correlation and regression analysis (Laplace, 1820; Galton, 1886; Pearson, 1896). These methods
helped us understand relationships between variables, but they weren’t enough to de�nitively establish
causality. Correlation alone doesn’t imply causation|a distinction that has haunted statistics ever
since (Pearl, 2018).

Thus, what does this all mean for our contemporary understanding of choice and causality? It is
rather true that these foundational ideas have shaped econometrics through statistical models focused
on identifying correlations. However, policy evaluation requires methods that go beyond correlation
into establishing causal relationships. Understanding whether a policy intervention truly drives eco-
nomic change, rather than merely coinciding with it, is at the heart of empirical economics. For
decades, policymakers have relied on econometric models, such as Di�erence-in-Di�erences (DiD) and
Two-Way Fixed E�ects (TWFE) (Angrist & Pischke, 2009), to estimate those policy e�ects. These
models provide reliable estimates of average treatment e�ects (ATE), o�ering insights into overall pro-
gram success (Imbens & Rubin, 2015). However, these traditional approaches rely on the homogeneity
assumption, which implies that policy e�ects are uniform across treated regions. While useful, this
assumption often fails to account for region-speci�c economic structures, institutional di�erences and
varying degrees of policy exposure|factors that naturally di�er between regions and in
uence the ef-
fectiveness of EU structural funds. In the 21st century, an emerging consensus acknowledges that the
e�ects of subsidies/treatment are far from homogeneous and are, in fact, inherently heterogeneous and
should not be considered uniform for successful policy design and implementation (Athey & Imbens,
2016; Fratesi & Perucca, 2023; Destefanis & Di Giacinto, 2024). Just as no two regions are identical
in their economic structure, institutional capacity or historical trajectory, their responses to external
interventions are equally diverse.

This dual need|capturing both the global e�ects of interventions and the heterogeneous e�ects
experienced by di�erent regions|has led to the development of advanced methods, such as Generalized
Synthetic Controls (Xu, 2017) that improves upon traditional methods by providing more 
exible
counterfactuals to estimate global e�ects and Causal Forests (Wager & Athey, 2018) that estimate
the heterogeneous treatment e�ects by dynamically partitioning data into subgroups with similar
responses. While traditional methods rely on strong assumptions and limited data, machine learning
algorithms like Causal Forests can model complex systems, even with high-dimensional and noisy data,
more 
exibly. Together, these methods o�er a more comprehensive framework for evaluating both the
overall impact of regional subsidies and their varying e�ects across di�erent economic contexts.

One area where these advanced techniques prove particularly valuable is in assessing the impact
of large-scale policy interventions (Athey & Imbens, 2017). The European Union’s (EU) vision for
economic and social convergence (Dinan, 2005) epitomizes the aspiration of creating a more equitable
EU by narrowing economic and social disparities between member states and regions, regarding in-
come levels, employment opportunities and equal access to quality education, healthcare and social
protections (European Commission, 2023). EU has long relied on regional subsidies as a key tool
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for fostering economic growth and promoting convergence in its less developed regions, supporting
innovation, infrastructure, and job creation (European Commission, 2024). These subsidies, primarily
delivered through the Structural and Cohesion Funds, represent a signi�cant component of the EU’s
strategy to reduce economic disparities among member states. This vision deepens the belief that
shared prosperity reinforces the European project, amplifying solidarity, resilience and stability when
facing global challenges (Rodr��guez-Pose, 2018). However, despite the substantial �nancial resources
dedicated to these programs, the true causal impact of these policies on economic outcomes remains
the subject of ongoing debate (Crescenzi & Giua, 2020).

In this dissertation, I aim to address this causal inference challenge for EU subsidies, by critically
examining Generalized Synthetic Controls for the overall e�ect of subsidies, while incorporating Causal
Forests to capture the heterogeneous treatment e�ects across regions. By leveraging and comparing
these methods, this research provides an integrated framework that goes beyond average treatment
e�ects to more precise estimation of how these interventions a�ect growth and convergence, o�ering
deeper insights into their actual bene�ts. This approach not only advances the methodological litera-
ture on causal inference but also contributes to the design of more successful, region-speci�c policies
that promote sustainable growth and convergence.

2 Review of Existing Literature

According to Garg and Fetzer’s \Causal Claims in Economics", published in November 2024, over the
course of the past few decades, economics has gradually prioritized establishing credible causal relation-
ships, indicating a shift towards more precise empirical methods, the so-called \credibility revolution".
Since the adoption of advanced empirical methodologies the proportion of research papers with explicit
causal claims rose signi�cantly from 4% in 1990 to 28% in 2020. However the growing methodological
complexity raises concerns about the transparency and replicability in modern economic research. The
clear trade-o� between complex causal narratives and transparency underscores how the incentives in
academic publishing may shape research priorities, favoring depth and complexity over accessibility
and general relevance. Recognizing this, I aim to outline fundamental and advanced methodologies
in causal inference for policy evaluation in economics, where randomization is not feasible, as well as
providing innovative solutions for causal inference while maintaining a commitment to transparency.
My goal is to provide a comprehensive overview of traditional methodologies while highlighting their
key strengths and limitations, that naturally lead to the progression from Di�erence-in-Di�erences to
Machine Learning for Causal Inference, in order to handle increasingly complex data structures, re-
lax restrictive assumptions (like parallel trends) and better account for unobserved heterogeneity and
staggered treatments. In doing so, I hope to demonstrate that it is achievable to obtain methodological
sophistication without sacri�cing the principles of scienti�c interpretability.

2.1 Difference-in-Differences

In its simplest form, the Di�erence-in-Di�erences (DiD) method is very intuitive and transparent. But
as it’s used in more complex research settings, it becomes a bit more complicated. DiD became well-
known after David Card and Alan Krueger’s 1994 study, where they applied it to assess the impact
of economic policies. It’s a quasi-experimental method that estimates causal e�ects by comparing
changes over time between a treated group and a control group. The key idea is that the control group
re
ects what would have happened to the treated group if the treatment hadn’t occurred.

The idea is to use the control group as a counterfactual|a way to project what the outcomes for
the treated group would have been in the absence of the treatment. From this, we can estimate the
treatment e�ect, often called the Average Treatment E�ect on the Treated (ATT).

For this method to work, we rely on several important assumptions. The most critical is the
parallel trends assumption, which says that without the treatment, the outcomes for both the treated
and control groups would have followed the same path over time (Lechner, 2011; Angrist & Pischke,
2009). This assumption is crucial but untestable. We also assume there are no spillover e�ects between
groups, meaning the treatment in one group doesn’t a�ect the outcomes of the control group (Imbens
& Rubin, 2015).

DiD is popular in policy evaluation because it simpli�es estimating causal e�ects by controlling
for factors that don’t change over time and comparing outcome changes between treated and control
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groups (Angrist & Pischke, 2009). However, it heavily depends on the parallel trends assumption,
which can introduce bias if trends di�er for reasons unrelated to the treatment. Other assumptions,
like no anticipation of the treatment and no interference between units (SUTVA) (Imbens & Rubin,
2015), are also needed to ensure valid results.

While e�ective in simple, two-period settings, DiD struggles with staggered treatments or time-
varying e�ects, where uniform treatment e�ects are harder to assume (Goodman-Bacon, 2021).

To address these issues, extensions to the DiD model include using two-way �xed e�ects (TWFE),
which control for unobserved, time-invariant di�erences across groups and time periods. However,
TWFE models can introduce bias in staggered adoption settings (Goodman-Bacon, 2021). Staggered
adoption allows us to handle cases where treatments are implemented at di�erent times, and dynamic
treatment e�ects, through leads and lags, help capture how the e�ects evolve over time (Callaway &
Sant’Anna, 2021; Goodman-Bacon, 2021).

2.1.1 Two-Way Fixed E�ects Extension

The Two-Way Fixed E�ects (TWFE) model builds on the traditional DiD, which makes it more suitable
for panel data with multiple units and time periods. By controlling for unobserved, time-invariant
factors within units and for common shocks that a�ect all units simultaneously (like macroeconomic
changes), TWFE provides 
exibility in complex data settings (Angrist & Pischke, 2009; Wooldridge,
2010). The strongest and often unrealistic (due to the real-world heterogeneity of treatment e�ects)
assumption is the homogeneity of treatment e�ects across units and over time, where the treatment
e�ect is not only constant but contemporaneous, meaning that the model does not allow for today’s
treatment to a�ect future outcome. Like DiD, TWFE relies on parallel trends assumption as the
most central assumption and on no anticipation assumption. Strict exogeneity implies that treatment
assignment is independent of past, present and future outcomes and supports that the treatment is
assigned in one shot, thus implying that the treatment is orthogonal to the two potential outcomes.

A conceptual issue is that strict exogeneity is more demanding than we often acknowledged. In
2019 Imai and Kim showed that strict exogeneity assumption can be \decomposed" into these following
assumptions; there is no unobserved time-varying confounder, past outcomes don’t directly a�ect cur-
rent outcome (no LDV), past treatments don’t direclty a�ect current outcome (no \carryover e�ect")
and the most important assumption; past outcomes don’t a�ect current treatment (no \feedback").
Feedback e�ects or carryover e�ects from past treatments, can bias TWFE estimates. In order to
relax the no LDV and no \carryover e�ect" assumption, we control for past treatments and for the no
\feedback" assumption, we need instrument variables, according to Arellano and Bond in 1991.

TWFE estimates can be biased due to presence of time-varying confounders, feedback from past
outcome and, critically, heterogeneous treatment e�ects. In the next extension we will see that TWFE
can lead to biased estimates in staggered adoption designs. In these designs, di�erent units receive
treatment at di�erent times and TWFE, due to the homogeneity in the treatment e�ect assumption,
uses already-treated units as controls for later-treated units. Naturally this leads to biased estimates,
because the model cannot properly account for the fact that the treatment e�ect may vary over time
or across units.

2.1.2 Staggered Adoption Extension

In more realistic frameworks, treatment can be adopted at di�erent times across units. For these
scenarios we use staggered adoption extension, a weighted average of multiple smaller DiDs. This
DiD extension acknowledges that di�erent units, such as states or regions, might adopt treatments at
various points in time, rather than simultaneously.

Goodman-Bacon (2021) decomposed the TWFE model into smaller, well de�ned DiD models. The
TWFE estimator under staggered adoption in Goodman-Bacon’s paper is a weighted average of all
possible 2x2 DiD estimators that compare di�erent timing groups to each other. He argues that the
weights on the 2x2 DiDs are proportional to timing group sizes and the variance of the treatment
dummy in each pair of groups, which is the highest for units treated in the middle of the panel. In
essence, units treated in the middle get more weight as treated and units treated at the beginning
or towards the ends get more weight as controls. He introduces three units; the never-treated group,
the early adopters group and the late adopters group. By applying a TWFE model to this type of
data, we are essentially estimating a weighted average of four smaller 2x2 DiDs. These are: the early
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adopters vs. never-treated group, the late adopters vs. never-treated group, the early adopters vs. late
adopters (as control for early adopters) and the late adopters vs. early adopters (as control for late
adopters). The last DiD is problematic because the treatment e�ects don’t remain constant over time
within each unit. Due to the time-varying treatment e�ects, in this fourth group, early adopters have
already experienced this \evolution" of the treatment e�ect, essentially making them a poor control
group and resulting in biased estimates for late adopters.

It is rather important to note that each 2x2 DiD in Goodman-Bacon’s decomposition estimates
a Local Average Treatment E�ect (LATE) for the speci�c timing groups being compared (e.g., early
adopters vs. never-treated). The TWFE estimate is a weighted average of these local e�ects, which be
di�erent across groups and time periods. As a consequence, this estimator may not represent a global
treatment e�ect, especially in heterogeneous treatment e�ect settings.

In 2020, De Chaisemartin and D’Haultf�uille showed that the weight assigned to each treatment
e�ect, �it, is a weighted average that depends on the residual, with higher weights assigned when there
is greater variation in the treatment dummy, similar to what Goodman-Bacon argued in his paper.
Smaller weights are given to periods where more units are treated and to units with more treated
periods. If staggered adoption occurs and the proportion of treated units is non-increasing in time,
later periods end up with smaller or even negative weights. We observe this in the fourth DiD example,
where the weights can be negative, even if all �it are positive, resulting to negative TWFE estimator.

Given this limitation of TWFE’s handling heterogeneous treatment e�ects in staggered adoption,
Callaway and Sant’Anna in 2021 addressed this by estimating group-time average treatment e�ects
(ATT(g,t)), that isolated treatment e�ects for each group and time period, leading eventually to
more reliable causal estimates. While their approach o�ered ways to overcome the biases inherent
in TWFE models, such as negative weighting and contamination of treatment e�ects across groups
and time periods, under staggered adoption, it also underscored broader limitations of TWFE when
heterogeneous treatment e�ects are present.

2.1.3 Dynamic Treatment E�ects Extension

Another important extension is dynamic treatment e�ects, which allow us to explore how the impact
of a treatment changes over time. Rather than assuming a constant treatment e�ect, dynamic models
use leads and lags to capture how the outcome evolves both before and after the treatment is applied.
This approach is crucial for understanding the full scope of the treatment’s impact, as e�ects may not
be immediate or uniform across all periods.

The conceptual foundation for studying time-varying causal e�ects emerged in the 1980s, partic-
ularly in the work of Heckman and Robb (1985), who emphasized the importance of accounting for
how treatment e�ects evolve over time, even though the focus was not explicitly on the DiD frame-
work. Recently, this approach was integrated by Callaway and Sant’Anna in 2021 to address treatment
heterogeneity across groups and time, in the context of staggered adoption settings, for more precise
causal inferences.

2.2 Synthetic Control

Athey and Imbens in 2017 in their paper argued that Synthetic Control (SC) method is the most
important innovation in the policy evaluation �eld in the past 15 years. SC is a method of causal
inference that o�ers a revolutionary, powerful approach for situations where there is only a single
treated unit and more control units resulting in traditional methods like DiD to fall short. Causal
inference is, in essence, a problem of \missing" information. This method, introduced by Abadie and
co-authors in seminal papers like Abadie & Gardeazabal (2003) and Abadie et al. (2010), uses the
information of the pre-treatment control unit (donor pool), to predict the counterfactual in the post-
treatment period for the treatment unit. The way this method does this is by assigning a weight,
a set of �xed numbers that add up to 1, to control units. Once this is done, the synthetic control
unit, that approximates a counterfactual for the treated unit, is constructed as a weighted combination
of untreated units. This unit replicates a synthetic control trajectory such in pre-treatment period
the synthetic control and treated unit show similar trends, but in post-treatment period, being a
convex combination of the control units, serves as a prediction of a counterfactual for the treated unit,
representing what would have happened to the treated unit in absence of the treatment.
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Despite its innovative advantages, in 2018 Bouttell et al. argue that in order for the results to be
unbiased, SC depends on �nding a well-matched donor pool for the treated unit. Additionally from
an algorithmic point of view, SC only handles one treated unit and one outcome at a time and as
discussed in a 2022 article by McClelland and Mucciolo, extensions to multiple treated units have been
proposed to enhance its applicability. According to Abadie this can be seen as a safeguard, making
SC a conservative method that reduces the chance of making large errors by avoiding extrapolation,
though this limits its 
exibility.

2.2.1 Penalized Synthetic Control

In 2019, Abadie and L’Hour addressed the balance of making large errors while limiting 
exibility, by
proposing a penalized synthetic control estimator to handle this challenge, associated with disaggre-
gated data. To ensure unique and stable weight estimation, their approach introduces a penalty term
that aims to balance the �t between the treated unit and its synthetic control against the discrepancies
between the treated unit and each contributing control unit. In essence, Abadie and L’Hour’s estima-
tor minimizes an objective function that is a combination of two components. The �rst component
calculates the overall di�erence between the treated units’ and its synthetic controls’ characteristics,
while the second component penalizes, with the penalization parameter � > 0, the di�erences between
the treated unit and each unit that contributes to its synthetic control. As �! 0 the method closely
aligns with the traditional SC as it focuses on matching the treated unit’s characteristics with the
weighted combination of control units, whereas as � ! 1 the method focuses on minimizing the
di�erences between the treated unit and each unit that contributes to its synthetic control, making it
resemble more the nearest neighbor matching. This penalization approach improved Abadie’s original
framework as it aimed to reduce interpolation biases.

2.2.2 Augmented Synthetic Control

To address the dependence of SC into �nding a well-matched donor pool for the treated unit and thus
its requirement for excellent pre-treatment �t, in 2020 Ben-Michael, Ferell and Rothstein introduced
the Augmented Synthetic Control (ASC) method, as an re�ning extension to the widely used SC. ASC
addresses this limitation by combining SC with an outcome model for bias-correction. The outcome
model is ridge regression because of its ability to control over�tting through regularization and therefore
to improve pre-treatment �t and reduce estimation bias in settings with poor pre-treatment �t. The
ridge-ASC improves the synthetic control by allowing the use of negative weights on control units, as
a last resort to improve the �t, while penalizing excessive deviations from the original SC weights to
maintain interpretability. Then with cross-validation the regularization parameter is determined, in
order to capture the essence of the improvement of the pre-treatment �t (reducing bias) while avoiding
over�tting to noise (controlling variance). Unlike the SC, ASC is capable of addressing situations,
where the treated unit falls outside the convex hull of control units or when auxiliary covariates are
critical for estimation, while in high-dimensional or noisy data, ASC’s augmentation ensures better
balance between the treated unit and the synthetic control, improving the validity of causal estimates.

While the ASC is useful in settings with poor pre-treatment �t, it assumes that all factors in
uenc-
ing the outcome are either observed or uncorrelated with the treatment assignment (strong ignorability
assumption) and assumes no interference or spillovers across units, which can be challenging to hold in
real-world scenarios. Due to the reliance on regularization, its e�ectiveness is sensitive to the choice of
the regularization parameter (�i). A small �i can lead to over�tting to noise and therefore to biased
and unstable estimates, due to its 
exibility in weights adjustment while a large �i can result in biased
estimates because it heavily penalizes deviations from the standard SC weights, which reduces over�t-
ting but might fail to su�ciently improve pre-treatment �t. To strike a balance between precision and
generalizability|avoiding both under-regularization and over-regularization| cross-validation is used
select the appropriate �i that minimizes the prediction error on the validation set by testing di�erent
�i.

Although this new approach is not a full ML model, it introduces a framework for the integration
of SC with ML models, which could potentially lead to extensions of hybrid methodologies.
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2.2.3 Generalized Synthetic Control

Many interesting, real-world policies are implemented in multiple regions, possibly at di�erent time
points, with either simultaneous adoption or more commonly, with staggered adoption.

Generalized Synthetic Control (GSC) method, an extension of the classic SC, was provided by
Xu in 2017 as a way to handle these limitations with methods and algorithms that generalize the
synthetic control method to cases with multiple units. For cases with multiple treated units, time-
varying e�ects and non-parallel trends, GSC incorporates the Interactive Fixed E�ects (IFE) model
to capture unobserved time-varying heterogeneity. IFE model accounts for hidden factors that vary
between units and over time, o�ering a 
exible counterfactual prediction, important, when units do not
share parallel trends, as assumed in SC method. The way it does this, is by estimating these hidden
factors from the control units in the pre-treatment period, to represent the unobserved patterns that
a�ect all units over time, and then the model projects treated units onto these estimated factors to
predict the counterfactual in the post-treatment period. The GSC model becomes robust with the
cross-validation approach that manages to select an optimal number of hidden factors, eventually
reducing the risk of over�tting.

With great strengths comes great trade-o�s; In his paper, Xu argues the model demands larger
time periods (T ) and unit dimensions (N) for reliable estimation, because a more limited number of
periods or units can reduce the model’s e�ectiveness and precision in estimating latent factors ft and
factor loadings �i. GSC also requires signi�cant computational resources due to the complexity of
factor estimation and cross-validation and careful selection of number of latent factors for the stability
of the estimates (Athey et al., 2021; Gobillon & Magnac, 2016). When these challenges are particularly
pronounced, machine learning methods o�er a robust and compelling alternative, driven by their ability
to relax strict parametric assumptions and improve predictive accuracy (Baiardi & Naghi, 2024).

2.3 Machine Learning for Causal Inference

In an econometrics framework, aiming to understand causal and non-causal relationships between
variables, we tend to interpret regression as the question \What is going to happen if we hold every
variable �xed and only change one?". However, in a Machine Learning (ML) framework, we adopt
a more prediction-focused perspective, wondering \Given a dataset with outcomes and independent
variables, could we build a reliable model that predicts outcome from new, unknown independent
variables?" (Varian, 2014). Unlike econometrics models, ML predictive models don’t focus on assump-
tions, mechanisms and causality, but rather on the predictive accuracy, robustness and reliability of
the models.

The lack of reproducibility has been persistently holding back the credibility of causal estimation
in policy problems. To make more informed policy evaluations, we want to ensure that the results
are representing accurately the reality. Systematic robustness checks are always essential but rare in
econometrics. Some of the main bene�ts of ML lie in its capacity to construct granular statistical
models, generate more precise counterfactual predictions about counterfactuals and to control for con-
founders without relying on prespeci�ed functional form assumptions. Unlike traditional methods such
as Ordinary Least Squares (OLS), which assumes treatment e�ects vary linearly with Xi covariates,
ML algorithms can capture complex, nonlinear relationships. Additionally, as the number of covariates
increases|a situation commonly encountered in high-dimensional datasets|the performance of OLS
deteriorates due to the curse of dimensionality. In contrast, ML methods are speci�cally designed to
handle high-dimensional data more accurately and e�ectively (Mullainathan & Spiess, 2017). These
characteristics of ML allow for a reproducible and systematic approach to address causal inference
challenges (Baiardi & Naghi, 2024). Additionally in econometrics we favor unbiased results (as OLS is
BLUE) (Wooldridge, 2016), whereas in ML settings, where the goal of the model is to generalize well
to new covariates, we explicitly allow for bias to reduce over�tting and improve predictive accuracy,
due to the bias-variance tradeo� in predictions (Geman, Bienenstock & Doursat, 1992).

Despite their core di�erences, these frameworks can be applied in causal inference challenges,
decomposing them into predictive and causal components. Using ML to understand the sources of
heterogeneity in treatment e�ects can allows us to better target treatments to groups that would
bene�t more from the treatment (Lechner, 2023). By leveraging 
exible, data-driven models, ML is
able to work with high-dimensional data, select the best model for these data, and modify the model
to not only �t the data well, but also support its ability to do inference (Mullainathan & Spiess,
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2017). ML methods perform exceptionally in prediction tasks but due to their ability to evaluate their
predictions outcomes via a test set, they don’t achieve well-established statistical properties (Athey &
Imbens, 2017). Unlike ML, for causal inference the ground truth for each observation is unknown, as it
is unknown what would have happened in the absence of the treatment for the treatment group and if
the control group had taken the treatment. By introducing ML methods into causal inference, we aim
to decompose the challenge (Imbens & Rubin, 2015) and identify the components that ML optimization
can be applied without compromising the primary objective of obtaining accurate estimands of causal
e�ects (Athey, 2015).

Therefore, the question lies in how we can obtain and combine the best of both worlds.

2.3.1 Double Machine Learning

In the context of estimating causal e�ects in high-dimensional settings, in 2018 Chernozhukov et. al.
introduce the combination of ML methods with traditional statistical methods. Regularization, while
helpful for preventing over�tting, can introduce bias, underscoring the need for debiasing techniques.
The Double Machine Learning (DML) framework operates in two stages and 
exibly leverages ML
techniques, like lasso or random forests, to debias estimators, ensuring reliable causal inference even
when dealing with large and complex datasets. It eliminates the bias introduced from regularization in
ML models through orthogonalization of score functions and cross-�tting. Neyman orthogonal scores
make the process less sensitive to ML-errors from the �rst stage when estimating the causal parameter,
while splitting the data into two parts|one for ML predictions and the other for estimating the
parameter of interest|�nally alternating their roles and combining the results, eliminates over�tting
biases.

By estimating these nuisance parameters, we can remove their e�ects and focus on the main e�ect of
interest. To do that, in the �rst stage, a ML model predicts the outcome Y from a set of covariates X,
and another model predicts the treatment T from the same covariates. These models yield predicted
values Ŷ and T̂ . In the second stage, residuals are calculated by subtracting these predicted values from
the actual outcomes and treatment values. This process, called partialling out, e�ectively removes the
in
uence of the covariates X, isolating the variations in the Y and T that are independent of the X.
The residuals are then used in an orthogonalized regression framework where the causal e�ect of T on
Y is estimated with Neyman orthogonality ensuring that errors in the �rst-stage nuisance parameter
estimation do not introduce bias in the estimation of the causal e�ects.

DML theoretically o�ers consistency and e�ciency but handling complex and high-dimensional
datasets can be computationally intensive, and the quality of the nuisance parameter estimation highly
depends on ML algorithms and their tuning. Additionally, like most causal inference methods, DML
assumes unconfoundedness which might not hold in real-world scenarios. Despite these, as an advanced
method, DML manages to e�ectively bridge the gap between predictive modeling and causal analysis
through the combination of ML with econometric models.

2.3.2 Causal Forests

Causal forests, introduced by Wager and Athey in 2018, come to build on the strengths of decision trees
and Random Forests while adapting on causal inference frameworks. By averaging over many trees,
Causal Forests provide a more robust framework for estimating heterogeneous treatment e�ects across
di�erent subpopulations. In policy-making because of the treatment e�ects being rarely uniform, this

exibility makes them extremely useful. The Random Forests technique, introduced by Breiman in
2001, is widely used to predict an outcome as a function of the independent variables. A random forest
is a collection of trees. To introduce variability and improve generalization, the forest is constructed
by taking di�erent random sub-samples of the data, with replacement, and building the optimal tree
for each sample (bootstrapping). For each tree build, we generate a prediction for each observation,
ending up with multiple predictions for each observation|one from each tree. By averaging all of
these predictions we get a �nal aggregated prediction for each observation. The use of bootstrapping
and aggregation is essential because it reduces the risk of over�tting, while improving the reliability
of the estimates. Causal Forests are the combination of this ML technique with causal inference. In
Causal Forests we essentially build Random Forests but instead of predicting the outcome, the focus
shifts on predicting each observation’s conditional average treatment e�ect (CATE), as a function of
independent variables:
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E[�ijXi] = E[Yi(1)� Yi(0)jXi]

Conditional Average Treatment E�ect (CATE) is the key to precision policy-making as it measures
how the e�ect of the treatment changes based on speci�c characteristics, giving the ability to policy-
makers to identify which countries bene�t from the treatment and which don’t. Unlike standard
Random Forests, Causal Forests select splits to maximize di�erences in treatment e�ects between
subgroups, using the criterion:

max
nX

i=1

�(Xi)2

To avoid over�tting and ensure more unbiased results, Causal Forests also employ honest splitting,
a technique that separates the data in two groups. One group is used for building trees and determine
the optimal splits, while the other group is used to accurately estimate treatment e�ects within each
leaf. Finally, the CATE for each observation is obtained by averaging the treatment e�ect estimates
from all trees, ensuring a stable and unbiased prediction.

2.4 Heterogeneous Treatment Effects: A Methodological Gap

While existing literature on policy evaluation has extensively explored average treatment e�ects of
EU subsidies by leveraging Di�erence-in-Di�erences and Two-Way Fixed E�ects, there is a signi�-
cant gap in understanding the heterogeneous treatment e�ects, as those methods often overlook these
e�ects especially in settings with staggered adoption and time-varying impacts. This research ad-
dresses this gap by explicitly focusing on estimating heterogeneous treatment e�ects in EU regional
subsidies. By comparing Generalized Synthetic Control, which validates global treatment e�ects, and
Causal Forests, which uncover subgroup-speci�c e�ects, this study explores the underutilized poten-
tial of Causal Forests in identifying important EU regional variations in policy impact and e�ectively
contributing to more context-sensitive policy design.

3 Addressing the Challenges of Causal Inference: From DiD
to Causal Forests

Earlier i mentioned that causal questions are crucial when evaluating the impact of policies or in-
terventions. But how is this best approached? In the real world, something either happens or it
doesn’t. Therefore, how can one compares what actually happened (the factual) with what would
have happened if a speci�c cause hadn’t occurred (the counterfactual)?

This \what if?" scenario lets us imagine how things might have unfolded under a di�erent decision.
It’s a simple but fundamental question in the social sciences, and lies at the heart of the potential
outcomes framework|a concept �rst introduced by Neyman in 1923. This framework provides a
structured way to think about causality by assigning two potential outcomes to each individual or
unit: one if the treatment occurs and one if it does not (the control). The causal e�ect is the di�erence
between these two potential outcomes for a given individual or unit.

In the Potential Outcomes Framework, a binary treatment variable Di for each individual or unit
i is considered, where:

Di =

(
1 if the individual receives the treatment;
0 if the individual does not receive the treatment:

For each individual i, the two potential outcomes are:

� Yi(1): the outcome for individual i if they receive the treatment (Di = 1).

� Yi(0): the outcome for individual i if they do not receive the treatment (Di = 0).

and the causal e�ect for individual i is:

�i = Y1i� Y0i
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Due to the Fundamental Problem of Causal Inference|both versions of potential outcomes cannot
be observed at the same time, it is impossible to directly measure individual causal e�ects (Holland,
1986).

Holland emphasized a statistical solution to this; to use randomization in order to leverage infor-
mation from other groups to get an idea of an average counterfactual. The idea was that, even if we
cannot directly observe the true counterfactual, in a Randomized Control Trial the control group’s
average (Average Treatment E�ects (ATE)) could serve as an estimate for the average counterfactual:

ATE = E[Y1]� E[Y0]

A di�erent approach to the Potential Outcomes Framework is the Structural Causal Model (Pearl,
2000), that exploits invariance assumptions of the model arguing that by manipulating the model
under di�erent interventions, in the long-run the model itself can serve as a counterfactual and the
deviations from that model can be attributed to either random noise or the treatment itself.

Estimating causal e�ects in practice is further complicated by selection bias and confounding. Se-
lection bias arises when units are not randomly selected for treatment and control groups, causing the
groups to be di�erent in ways that can in
uence the outcome. As a result, any observed di�erences in
outcomes may be driven by these pre-existing characteristics rather than the treatment itself, making
it di�cult to determine whether the treatment is truly responsible for the observed e�ects and even-
tually leading to biased conclusions about the causal relationship. Therefore, in practical terms, the
estimation involves comparing the average outcomes of treated groups with those of untreated groups,
which provides the average treatment e�ect among the treated (ATT), including a selection bias term,
as treatment assignment is not random:

E[Y jD = 1]� E[Y jD = 0] = E[Y1 � Y0jD = 1]
| {z }

ATT

+ E[Y0jD = 1]� E[Y0jD = 0]
| {z }

Selection Bias

Confounding occurs when an external variable, the confounder, due to its relation to the treatment
and the outcome in
uences both of them, resulting in biased estimates and misleading conclusions of
the treatment e�ect (Greenland & Robins, 2009).

To address for these biases we rely on strong assumptions, like Conditional Ignorability, that
assumes that treatment assignment is independent of potential outcomes, given observed covariates
(Chernozhukov et. al., 2024). Traditional methods like DiD and TWFE models depend heavily on this
assumption. However, newer approaches, such as GSC that uses advanced regularization techniques
and Causal Forests that leverage machine learning are used to overcome the limitations of traditional
methods by handling heterogeneity and complex data more e�ectively.

In the following sections, I will explore how these advanced techniques handle the challenges of
causal inference|particularly in the context of real-world EU subsidies data|and o�er more robust
solutions for estimating treatment e�ects.

3.1 Conditional Ignorability and Confounders

Conditional Ignorability, also known as conditional exogeneity or assumption of no unmeasured con-
founding, is a key concept in causal inference. It assumes that, given a set of covariatesX, the treatment
assignment D is independent of the potential outcomes Y (1) and Y (0). This assumption implies that,
once we account for the relevant covariates, the treatment can be assumed to be randomly assigned,
allowing us to estimate causal e�ects without bias from unmeasured confounders (Chernozhukov et.
al., 2024).

Formally, this assumption is written as:

Yi(d) ? Di jXi for all d 2 f0; 1g

It’s important to note that Conditional Ignorability is fundamentally untestable; it is a theoretical
assumption based on domain knowledge and is often represented visually through causal diagrams
(Directed Acyclic Graphs or DAGs) (Tennant et. al., 2021).

In both traditional and ML approaches, choosing the right covariates is essential to ensure that
estimates aren’t biased by selection bias or confounding. By adjusting for these relevant covariates,
we reduce bias and improve the accuracy of our causal estimates.
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Advanced methods like GSC and Causal Forests build on this concept by o�ering more 
exible ways
to account for complex data structures and heterogeneous treatment e�ects. GSC extends traditional
synthetic controls by using interactive �xed e�ects, incorporating hidden factors to address time-
varying unobserved heterogeneity. In contrast, Causal Forests provide a non-parametric method for
estimating heterogeneous treatment e�ects across di�erent subpopulations. Relying on decision trees
and honest splitting, they adjust for covariates while avoiding confounding.

3.1.1 Causal Diagrams and Confounders

Causal diagrams, especially DAGs, are essential tools for visualizing the assumptions in causal models.
A DAG helps to clearly represent the relationships between variables, making it easier to identify
confounders|variables that a�ect both the treatment and the outcome. In order to avoid bias in
estimating the true treatment e�ects we have to control for these confounders.

D  X ! Y

In the diagram above, X is a confounder that in
uences both the treatment D and the outcome
Y , potentially creating a spurious relationship between them. Failing to account for X, our estimates
of the causal e�ect of D on Y will be biased, as the variation in Y could be partly due to the in
uence
of X. By conditioning on X|essentially controlling for it|we \close the backdoor" path and isolate
the causal e�ect of D on Y , ensuring that they no longer share a common cause.

DAGs also help identify other sources of bias, such as collider bias and selection bias. Collider bias
occurs when a variable (S) is in
uenced by both the treatment and the outcome. Unlike confounders,
conditioning on a collider introduces a spurious association/dependence between D and Y .

D ! S  Y

When conditioning on S (for instance, by including it in our analysis), a backdoor path opens
between D and Y , introducing a spurious relationship|a relationship between them that didn’t ex-
ist|that distorts the true causal e�ect (Hern�an & Robins, 2020).

When selection bias occurs in analysis due, to focusing on a subgroup of the population that does
not accurately represent the population it can skew the relationships being estimated. Sometimes it
can be seen as a type of collider bias from conditioning on a common e�ect of two causes (D and Y ).
In essence, selection bias arises from factors, like random sampling or omitting particular groups based
on their treatment or outcome status. By accounting for these potential biases and adjusting for all
relevant confounders, we can minimize biased selections and generate more precise evaluations of the
treatments impact (Hern�an & Robins, 2020).

3.2 One Size Doesn’t Fit All: Heterogeneous Treatment Effects

While estimating the ATE can provide valuable information, for more precise policy-making, the
critical point is to understand how treatment e�ects vary across di�erent sub-populations and ensure
that �ndings are accurate and not due to sampling variation. Sampling variation can be challenging
for targeted policy because of the uniqueness of each unit. Due to this uniqueness, the data to predict
exactly the e�ects of a treatment for any particular unit, are limited. Taking it a step further, the
question is not only \for whom" the treatment is e�ective, but also \why" it is. By identifying groups
that treatment has di�erent e�ects, hypotheses can be generated about the underlying mechanisms
that drive these di�erences. In essence, understanding which groups bene�t more from the treatment
can lead to policy reformulation and more improved treatments.

3.3 DiD and TWFE Limitations

In this section, I will outline the main limitations of both DiD and TWFE. While DiD is a useful tool
in many contexts, it runs into challenges when there is only one treated unit or a small number of
treated units. In those cases, it is di�cult to �nd an appropriate control group, and the estimates can
become unreliable (Callaway & Sant’Anna, 2021). DiD also depends heavily on the parallel trends
assumption|the idea that the treated and control groups would have followed the same trend if there
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were no treatment. Under this assumption, the goal of the DiD estimator is to estimate the unbiased
ATT:

ATTDiD = E[Yit(1)� Yit(0)jDi = 1]

But when that assumption does not hold, the DiD estimator can produce biased results, as illus-
trated by the bias formula below:

BiasDiD = E[(Yit(0)� Yi;t�1(0))jDi = 1]� E[(Yit(0)� Yi;t�1(0))jDi = 0]

With TWFE, the big limitation shows up in staggered adoption settings, where units are treated at
di�erent times. TWFE can produce biased estimates by combining positive and unintended negative
weights, as a result of early and late adopters comparisons, distorting the treatment e�ect. This
issue gets even more problematic when treatment e�ects are dynamic-changing over time. Goodman-
Bacon’s decomposition illustrates this problem that leads to misleading estimates of the treatment’s
actual impact:

TWFEATT =
X

(g;g0)

!g;g0 �ATTg;g0

here (g; g0) is each unique two-group comparison, g and g0 are the groups that receive treatment
at di�erent times, ATTg;g0 is the DiD estimate of the ATT for the comparison between g and g0,
capturing the di�erence in outcomes under the assumption that the trends of g and g0 would be the
same in the absence of treatment and !g;g0 are the weights for each comparison, which can be negative
in early and late adopters comparison.

3.3.1 DiD and Parallel Trends

As mentioned earlier, the most critical assumption in a DiD model is the parallel trends assumption,
which is crucial to ensure that any observed di�erences in outcomes after treatment are due to the
treatment itself, rather than some other factor. When this assumption is violated, the treatment e�ect
estimates may be biased, eventually leading to incorrect conclusions about the intervention’s impact.
To address confounders, selection bias, or time-varying factors, several initial methods were introduced
to approximate parallel trends (balance treated and control groups on observed covariates).

Confounders and selection bias can weaken the parallel trends assumption by introducing variables
that a�ect both the treatment assignment and the outcome. In panel data settings, the unobserved
factors that in
uence both treatment and outcome can cause the treated and control groups to follow
di�erent trends without treatment. For instance, if the treated group is more exposed to speci�c
economic conditions or demographic factors, the di�erences in outcomes might re
ect those confounders
and not the treatment itself. Selection bias can also come into play when groups are non-randomly
selected, but are chosen based on characteristics tied to both the treatment and the outcome. This
bias also happens when conditioning on colliders, which opens backdoor paths between treatment and
outcome, eventually distorting the causal estimates. The problem is further ampli�ed when there
are time-varying confounders, making the parallel trends assumption particularly fragile. One way
to address this important violation and approximate the parallel trends assumption is by including
covariates in the regression model to account for di�erences between the treated and control groups.

Yit = �+ �Treatmenti + 
t + �(Treatmenti � Postt) + �Xit + �it

here Yit is the outcome variable for unit i at time t, Treatmenti is the indicator for the treated
group, � is the treatment e�ect estimate, Postt is the indicator for the post-treatment period, � are the
coe�cients for the covariates and Xit is the vector of covariates that account for confounding factors.

But this approach has its own challenges. While it helps address confounding, adding too many
covariates can introduce over�tting or mis-speci�cation, which further complicates estimation and
interpretation, leading to biased treatment e�ect estimates if these relationships are not correclty
modeled (Angrist & Pischke, 2009).

To address selection bias, Inverse Probability Weighting (IPW) is used (Rosenbaum and Rubin,
1983). Each observation is weighted by the inverse probability of receiving treatment, estimated as a
propensity score. In the standard DiD model with a treatment e�ect:
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Yit = �+ �(Treatmenti � Postt) + �it

observations are weighted as:

wi =
Di

p(Xi)
+

1�Di

1� p(Xi)

withDi, i 2 f0; 1g, being the indicator for treatment and p(Xi) the propensity score (the probability
of treatment given covariates Xi).

IPW’s role is to make the treated and control groups more comparable on observed covariates by
ensuring that every observation contributes to the analysis based on how likely it was to receive the
treatment and therefore reducing selection bias. However it cannot address bias due to unobserved
confounders.

Combining these two approaches, the Doubly Robust (DR) estimator o�ers additional robustness
to selection bias (Sant’Anna & Zhao, 2020):

Yit = �+ �(Treatmenti � Postt) + �Xit + �it

The goal of this approach is to balance treated and control groups on observed covariates while
using covariate adjustment to adjust for residual di�erences resulting in selection bias reduction due
to observed factors. However due to the sensitivity to unobserved confounders, to produce unbiased
estimates it heavily relies on specifying either the propensity score model or the covariate adjustment
model correctly.

3.3.2 TWFE Limitations

The TWFE estimator is widely used in DiD models to estimate changes in outcomes by applying time
and group �xed e�ects.

Yit = �i + 
t + �(Treatmenti � Postt) + �it

In the standard TWFE DiD model �i is the individual �xed e�ects that capture time-invariant
unobserved characteristics for each unit and 
t are the time �xed e�ects that capture any time-speci�c
shocks a�ecting all units.

However this method faces signi�cant challenges in staggered adoption settings, where the timing
of treatment varies across units (Goodman-Bacon, 2021). In these cases, TWFE estimates a variance-
weighted average of treatment e�ects, and some of those weights end up being negative. That happens
when early treatment adopters are used as controls for groups that are treated later, which introduces
bias, especially when treatment e�ects change over time. The estimated treatment e�ects are distorted
because those earlier units are still being a�ected by the treatment, leading to invalid comparisons and
less reliable, biased estimates.

Additionally if treatment e�ects vary over time, TWFE produces a biased estimate because in
essence it assumes a constant treatment e�ect � across all units and time periods (Callaway &
Sant’Anna, 2021).

Yit = �i + 
t + �it Treatmentit + �it

In the dynamic setting with time-varying treatment e�ects above, �it is the time-varying treatment
e�ect speci�c to unit i and time t, that TWFE cannot directly estimate. Instead it averages these
time-varying e�ects across units and periods, introducing bias in scenarios where treatment e�ects are
heterogeneous across units or vary over time (De Chaisemartin & D’Haultf�uille, 2020).

3.4 Synthetic Control

To reduce the biases that TWFE introduces in staggered adoption settings, more 
exible methods like
SC have been developed, to provide a more reliable counterfactual for the treated units. SC methods
handle unobserved heterogeneity across units and over time by creating a synthetic control group from
a weighted combination of untreated units with the weights vector W = (w1; w2; : : : ; wJ). It does this
by solving the following objective function:
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W

KX

k=1

vk

0

@X1k �
J+1X

j=2

wjXjk

1

A
2

here X1k is the value of pre-treatment covariate k for the treated unit, Xjk is the value of pre-
treatment covariate k for control unit j, vk is a weight re
ecting the importance of covariate k in the
matching process and W = (w2; : : : ; wJ+1) are the weights for the control units, constrained such that
wj � 0 and

PJ+1
j=2 wj = 1 (Abadie, Diamond & Hainmueller, 2010).

When the synthetic control group is constructed, the treatment e�ect for the treated unit i = 1 at
time t is estimated as the di�erence between the outcome for the treated unit and the outcome for the
synthetic control (Abadie & Gardeazabal, 2003):

Treatment E�ectit = Y1t �
J+1X

j=2

wjYjt

here Y1t is the observed outcome for the treated unit at time t and
PJ+1
j=2 wjYjt is the estimated

counterfactual outcome for the treated unit, constructed from the weighted outcomes of control units.

3.5 Generalized Synthetic Control

Expanding the innovative idea of replicating SC trajectories based on control units’ weights for a single
treated unit, GSC takes this idea a step further. As discussed in the literature review section, GSC
method improves SC by handling multiple treated units, time-varying e�ects and non-parallel trends.

In his paper, Xu uses a factor-augmented model to motivate the SC method to include both
observed and unobserved factors:

Yit(0) = �0tZi + �t + �0ift + "it

where the counterfactual outcome is Yit(0), the observed covariates are Zi, the time-�xed component
�t, the hidden factors ft with unit-speci�c factor loadings �i. The essence of the GSC, the IFE
component (�0ift) captures the unobserved heterogeneity that vary over time. Although GSC relaxes
the parallel trends assumption for observed outcomes, for consistent counterfactual predictions it
assumes parallel trends in latent factors. Thus, in the absence of treatment, the latent factors (�0ift)
unfold similarly across treated and control units:

�Ft = Ft+1 � Ft

For valid counterfactual construction, based on the overlap assumption, treated units should obtain
adequately similar control units for both observed covariates (Zi) and latent factors (�i):

P (Di = 1 j Zi; �i) > 0 and P (Di = 0 j Zi; �i) > 0

for all i in the sample. Under this assumption no treated unit lies outside the support of the control
units, which prevents extrapolation beyond the observed data. It is also crucial to assume that in the
pre-treatment period (t < T �), the treatment e�ect is assumed to be zero to ensure that the behavior
of treated units in the pre-treatment period is an unbiased baseline to estimate the counterfactuals
(no anticipation of treatment):

�it = 0 8t < T �

Moreover, in order to ensure valid causal inference and con�rm that unobserved factors in
uencing the
outcome are not methodically associated to the treatment or observed variables, the model assumes
strict exogeneity of the error term, which means that the error term �it is uncorrelated with treatment
assignment, covariates and latent factors:

E[�it jWit; Xit; �i; Ft] = 0
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It also assumes that the treatment of one unit does not in
uence the outcomes of other units (no
interference or spillover e�ects/dependencies between treated and control units - SUTVA):

Yit(di; dj) = Yit(di) 8j 6= i

Here Yit(di; dj) is the outcome of unit i under its own treatment status di and the treatment status of
other units dj . To prevent spurious correlations and make certain that the estimation of latent factors
is consistent, the assumption of weak serial dependence of errors ensures that the error term �it does
not show strong autocorrelation over time:

Cov(�it; �is)! 0 as jt� sj ! 1

Xu’s innovation now builds on the SC method, by incorporating a IFE model, eventually creating
the GSC method. In this method, a three-step approach is utilized based on a latent factor model. To
guarantee proper identi�cation of the latent factors and factor loadings, while preventing over�tting
the factor model incorporates two identi�cation conditions. The �st condition is the orthogonality
and normalization of latent factors to ensure that the factors are uncorrelated and have unit variance,
resolving scale and rotational indeterminacy:

1
T
F 0F = Ir

Here F is a T � r matrix of latent factors, T is the number of time periods, r is the number of
factors and Ir is the r� r identity matrix. The second one is the orthogonality of factor loadings that
ensures that the factor loadings corresponding to di�erent factors are uncorrelated, allowing for unique
decomposition of the model’s covariance structure:

�0� = diagonal matrix

Here � is an N � r matrix of factor loadings and N is the number of cross-sectional units.
For the �rst foundational model, the IFE uses data from the control units, during the pre-treatment

period to estimate, the hidden factors ft that represent the unobserved patterns that a�ect treated
and untreated units over time and how much each control unit is a�ected from these factors �0i.

Control: Yit(0) = X 0it� + �i + �t + �0ift + "it

Here, X 0it� are the observed covariates, �i are the unit-speci�c �xed e�ects, �t are time-speci�c
e�ects, �0ift the hidden factors that vary over time and across units and capture the unobserved
heterogeneity and the error "it. Additionally, to ensure unbiased and e�cient estimation, the model
makes the assumption that errors are independent across units and have constant variance (cross-
sectional independence and homoscedasticity of the error term):

E[�it�js] = 0 8i 6= j

Var(�it) = �2

Second, the same model structure is used for ensuring that in a \no-treatment" scenario the treated
units would have similar patterns to control units. For the treated units, the pre-treatment period
provides a baseline for observing whether the latent factor structure holds for treated units as well.

Treatment (pre-treatment): Yit(0) = X 0it� + �i + �t + �0ift + "it

Then, in the post-treatment period, the model projects the treated units onto the factors to create
the counterfactual prediction for the treated units.

Treatment (post-treatment): Yit(1) = X 0it� + �i + �t + �0ift + "it + �it

Here, Yit(1) is the actual outcome and �it treatment e�ect.
This way, by �rst estimating hidden factors in the control group and then projecting treated units

onto these factors, GSC generates counterfactuals without the need for parallel trends. Unlike SC which
constructs non-parametric weighted average of control units, GSC is a more model-based approach,
utilizing the IFE model.
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3.5.1 Limitations of GSC

Hidden factors and loadings require careful speci�cation making GSC’s structure more challenging
than the straightforward SC. Because of GSC not relying on non-parametric weights like the classic
SC, but rather on parametric factor model, it ends up with interpretation challenges (Xu, 2017).
Additionally, in GSC a small number of time periods (T ) and few control units (N) can make the
model unable to identify the actual trends and that could lead to over�tting or unstable predictions.
While cross-validation can help to determine the right number of factors, with a smaller dataset, there
is a higher risk of picking a number that doesn’t fully represent the true underlying trends, a�ecting
the model’s accuracy. Cross-validation also increases the computation intensity of the method, as it
demands signi�cant computational resources for choosing the optimal number of factors.

3.6 Addressing Challenges of Causal Inference with Machine Learning

After discussing the broader issue of historical Causal Inference challenges, i will attempt to address
some of the challenges with Machine Learning, particularly with Causal Forests. In the previous
chapter I wonder how ML can be leveraged to obtain data-driven identi�cation of treatment e�ect
heterogeneity while maintaining reproducibility and allowing for valid statistical inference. The answer
is, through Causal Forests. Moving away from the \one-size-�ts-all" world towards a world with
customize solutions, the promise of Causal Forests is precision policy-making, by providing reliable
estimates of which countries seem to bene�t from a treatment and which don’t (Athey, 2019).

As discussed, Causal Forests are a combination of Random Forests with causal inference to estimate
CATE. In 2018 Wager and Athey provided the �rst formal proof that Random Forests can be used
not only for predicting outcomes, but also for estimating treatment e�ects with con�dence that the
inferences are statistically valid in large samples. In essence they proved how to modify the Random
Forests algorithms to make them useful for inference.

3.6.1 Mechanics and Challenges of Causal Forests

Causal Forests are constructed from multiple causal trees. A causal tree begins with one \question" that
partition the data into two branches based on the answer and recursively each branch gets partitioned
further based on following series of \questions", eventually creating a tree structure. At the end of
each branch, in each leaf, each tree contains a group of units with similar characteristics of the factors
used to partition the data. Then the causal tree estimates the treatment e�ect for each leaf, assuming
consistent treatment e�ect within each one (Wager & Athey, 2018).

Causal Forests rely on unconfoundedness assumptions and honesty in the tree-splitting process,
to provide asymptotically unbiased treatment e�ect estimates and avoid over�tting. Under uncon-
foundedness assumption treatment assignment Di (1 for treated and 0 for control) is assumed to be
independent of the potential outcomes Yi(1) and Yi(0), conditional on the covariates Xi to ensure that
Xi will capture all confounders a�ecting treatment and outcome:

Yi(1); Yi(0) ? Di j Xi:

Additionally, under the overlap assumption there must be a non-zero probability of receiving both
treatment and control, for all values of X:

0 < P (D = 1 j X) < 1

Moreover, SUTVA makes certain that there is no interference between units and ensures consistency in
the de�nition and application of treatment. In addition to the structural assumptions of Causal Forests
above, the process of tree construction relies to a great extent on the honesty principle. Honesty is
crucial in the construction of the trees, in order to not allow for bias into the analysis. It strategically
prevents the trees from using the outcome data to decide where to partition the data, reserving them to
estimate treatment e�ects exclusively after the partition process is completed (Wager & Athey, 2018).
An essential question is how to enforce honesty in tree construction. One approach is the double
sample trees, where the data are separated into two parts. The �rst part is used to shape the tree
by partitioning the data into groups and the second part is used to estimate the treatment e�ect for
each group. To identify the groups and ensure that the tree stays on track, Causal Forests introduce
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controlled randomness with random feature selection. In each split, the tree randomly chooses a subset
of features to examine to ensure that no single feature, even if it is irrelevant, can hijack the splitting
process, in order to keep the focus on the most important factors (Breiman, 2001). Additionally,
Causal Forests, instead of just grouping units with similar outcomes or based on prediction accuracy
that hides the e�ect of the treatment, use a splitting rule that focuses on maximizing the di�erences in
treatment e�ects between the groups created by each partition. The greater the di�erence, the more
opportunity there is to observe how the treatment a�ects di�erent units di�erently.

However, how do these special splitting rules are implemented? The second approach is propensity
trees, which ensure the trees are honest without actually splitting the data into two parts. They use
only the treatment assignment to decide how to partition the data, without allowing for the outcome
data to bias the partitioning decisions but only use them to estimate the treatment e�ect, once the
structure of the tree is completed (Wager & Athey, 2018). Wager and Athey’s formula below, computes
the treatment e�ect for each subgroup, using the estimation sample to avoid over�tting.

�̂(x) =
1
n

X

i2Estimation Sample

�
DiYi
ê(Xi)

�
(1�Di)Yi
1� ê(Xi)

�

where Di is the treatment indicator for unit i, Yi is the outcome for unit i, ê(Xi) is the estimated
propensity score, or the probability of receiving treatment given covariates Xi

Once the honest tree is build, with sample splitting or propensity tree, we can use the correct data
to estimate the treatment e�ect for each group. Building an honest structure and then estimating
treatment e�ects within that structure is a key element of what makes Causal Forests so e�ective.

Causal Forests are build by averaging multiple honest trees.

RF (x;Z1; : : : ; Zn) =
��

n
s

���1 X

1�i1<i2<���<is�n

E��D [T (x; �; Zi1 ; : : : ; Zis)]

here T (x; �; Zi1 ; : : : ; Zis) is the prediction from a single tree, and � is the randomness in the tree-
building process.

As the sample size increases, the treatment e�ect estimates are asymptotically normal (Gaussian)
and centered around the true treatment e�ect.

�̂n(x)� �(x)
�n(x)

) N (0; 1); �2
n(x) p�! 0

This asymptotic normality allow for constructing con�dence intervals around the estimates, instead
of point estimates, providing a range for uncertainty in the estimates (Wager & Athey, 2018). To
quantify this uncertainty, the variance around the treatment e�ect is computed, to allow for precision
measurement. Initially, an estimate of this variance is calculated across subgroups based on the splitting
of data, capturing the variability of treatment e�ect estimates across subgroups:

�̂2
�(x) = Var(�̂(x)jX = x)

For a more robust estimate, Wager and Athey suggest the in�nitesimal jackknife variance estimator
that measures the variation of the treatment e�ect estimates across all the trees in the causal forest. In
the variance formula below, by capturing this variation, the con�dence intervals around the treatment
e�ect are more reliable and less likely to be too narrow:

V̂IJ(x) =
n� 1
n

�
n

n� s

�2 nX

i=1

Cov� [�̂�b (x); N�ib]
2

here �̂�b (x) is the estimate from the b-th tree, and N�ib shows if the i-th sample was included in the b-th
tree.

The con�dence intervals for the treatment e�ect are calculated as:

CI = �̂(Xi)� 1:96
q
V̂IJ(Xi)

Traditional methods that was used until now, such as k-NN neighbours and propensity score match-
ing, aim to �nd matches based on similarity but in high-dimensional datasets identifying meaningful
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similarity among units is rather impossible. In such situations, Causal Forests shine and improve. The
more complex and high-dimensional the data, the more e�ectively they �lter out irrelevant noise of the
data and focus on accurate results. When adding more noise, with random feature selection, Causal
Forests disregard all the irrelevant information by examining only a subset of features at each split. By
focusing on details and not overall trends, Causal Forests capture the treatment variation e�ectively.
They adaptively dive into targeted policy-making by addressing not only if the treatment works but
for whom does it is more e�ective. This is valuable not only for tailoring interventions but also for
understanding why di�erent units respond di�erently to treatment. By understanding what makes
units di�erent, we can gain insights into how treatments actually work and how to improve them.

Causal Forests face challenges too. One issue is controlling bias, especially at the edges of the data,
where the estimates may be less accurate, due to limited observations. As an ML method, they rely
on training data and when predicting outside from training range, boundary bias can occur. Another
challenge is developing more robust methods to estimate variance, especially when data are limited
or there is a large number of features. Additionally, parameter tuning is crucial for Causal Forests,
as �nding the balance between bias and variance can be challenging (Hastie, Tibshirani, & Friedman,
2009).

3.7 Structured vs. Flexible Causal Inference: GSC vs. Causal Forests

Extensive research and simulations comparing k-NN with Causal Forests have been already conducted
by Wager and Athey in 2018; however, in this paper, i will attempt to compare them with the GSC
method.

Xu’s SC extension, GSC is typically more structured, by using parametric factor models like the
IFE model, incorporating latent factors to capture unobserved time-varying heterogeneity across units
over time. It is designed for panel data with observable time patterns in treatment e�ects across
groups. However, it may not be as 
exible as the fully non-parametric method of Causal Forests. The
non-parametric Causal Forests extends Random Forest, and more 
exibly allows for highly granular
estimates of heterogeneity in treatment e�ects across high-dimensional covariates, based on individual
characteristics.

Because of the IFE model incorporation, GSC handle more e�ectively, settings with multiple treated
units and time-varying trends making it generally robust in scenarios with staggered adoption. The
IFE model also allows GSC to 
exibly model counterfactual outcomes when complex, time-varying
unobserved factors are present, adapting well to situations where trends are not parallel between treated
and control units. For further robustness, GSC use cross-validation to optimize the number of latent
factors, reducing the risk of over�tting. The reliable estimation of latent factors and factor loadings
is possible as long as there is a su�cient number of time periods (T ) and units (N). Additionally,
cross-validation and latent factor estimation are computationally intensive tasks and unlike simpler
SC models, GSC’s parametric factor model adds complexity, making interpretation challenging.

On the other hand, Causal Forests are designed for high-dimensional data because of their ability
to handle many covariates e�ectively and model complex interactions. In individual-level predictions,
for more precise policy-making, this method thrive due to the identi�cation of the treatment e�ects
for subgroups. Additionally by providing asymptotic con�dence intervals for treatment e�ects they
support hypothesis testing and inference in complex observational data settings. However, they are
sensitive to data structure as they perform best with large sample size and balanced distribution of
treated and control units, but if the data are limited or unbalanced it may not capture accurately
the treatment heterogeneity. They also rely on unconfoundedness and if confounders are not fully
accounted for, there could be biased estimated treatment e�ects.

Naturally, GSC is more appropriate for policy evaluations in structured settings when the treat-
ments are introduced at di�erent times across groups and parallel trend assumptions don’t hold.
Whereas Causal Forests are unmatched in precise policy-making where the goal is to estimate sub-
group treatment e�ects and especially in high-dimensional, non-linear settings with complex covariate
interactions. Both of them provide answers, but the �nal choice depends on the speci�c research
question one seeks to get answers for.
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4 Methodologies: Bridging Theory and Practice

The following section contains the empirical application of GSC and Causal Forests methods and
comparison of their results, on real data from the EU in order to observe the strengths and areas of
improvement for each method. These methods are tested on how they handle real-world complexities
and are compared to highlight their complementary roles in providing a more robust and comprehensive
framework for policy evaluation.

The main objective of this approach is to evaluate the strengths and limitations of each method
to answering a natural question emerging from the growing academic interest in understanding the
causal impact of public investment programs on regional economic outcomes; \What is the e�ect of
EU funding on the regions’ Gross Value Added?".

5 Empirical Data Analysis and Discussion

Reality is far from optimal and controlled. It is common for real data to contain complexities like
unobserved confounders, measurement errors or correlations between covariates and treatment, and
irregularities. Yet, it is precisely these challenges that make the use of real data critical for generating
insights that have an actual meaning in complex economic realities of the systems, connecting analysis
to relevant, reliable and actionable conclusions. For the purpose of this analysis, i will leverage a
dataset that captures information from key economic variables, crucial for exploring the impact of
EU’s subsidies in EU regions. These regions’ eligibility for EU funding programs that mostly target
less-developed regions, determines whether they receive treatment or not. The eligibility is determined
based on prede�ned criteria, like gross value added (GVA) being below a speci�c threshold. For this
reason, in the dataset, a binary dummy variable D indicates whether a region received the EU subsidy
(D = 1) or did not receive funding or were not eligible to receive it yet during the observation period
(D = 0). Some regions being treated earlier than others, due to them being quali�ed sooner based
on economic metrics, indicate staggered adoption of EU funding programs. The variable treat year
records the year that a region received the subsidy, while rel year calculates the number of years until
and since the treatment for each region, for dynamic analysis of e�ects.

To identify initial patterns, understand baseline di�erences and pre-treatment trends in the dataset
and generate hypotheses that will guide the next steps in the analysis, I perform an Exploratory Data
Analysis to describes the data. The data is a panel with 8,456 observations, for 228 NUTS2 regions,
within 26 countries (see Table 11, Appendix), over time. As illustrated in Figure 1, out of these regions,
96 NUTS2 regions received the treatment.

Treatment Status

Untreated

Treated

Treated and Untreated European Regions

Figure 1: European Regions by Treatment Status
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The inclusion of NUTS2 regions in Europe, representing subnational administrative units, is ideal
for a detailed analysis while preserving comparability across countries, as EU subsidies are often
implemented and monitored at this level of granularity. Spanning from 1980 to 2022, the dataset
includes periods such as the biggest enlargement of the EU from 2004-2007, the 2008 �nancial crisis and
the recovery post-COVID-19 period. EU funding targets infrastructure, productivity and investment
making GVA a great tool for measuring the regional economic performance, due to its ability to
provide insightful information about the standard of living and the productivity within EU regions.
By measuring the value of goods and services produced, accounting for the value of intermediate
consumption, GVA is particularly suitable for a target variable in forecasting models. For instance,
in 2013 Lehmann and Wohlrabe employed an autoregressive distributed lag model aiming to forecast
the total and sectoral GVA in the German economy, highlighting its predictive capabilities. Therefore,
representing the in
ation-adjusted output of a region’s economy per individual, the outcome variable
Y is decided to be the real GVA per capita. Measuring changes in GVA will help to evaluate whether
these subsidies are achieving the economic impact that they were designed to achieve.

Labour appears to be one of the main inputs in
uencing economic output, productivity and growth
alongside capital, according to economic theory. For this reason, employment rate, re
ecting the share
of employed people relative to the total population contributing to the economy, capital stock per capita
representing individual’s average value of physical assets and relative gross �xed capital formation
measuring economy’s capital investment (buildings, machinery and infrastructure), will serve as the
predictors X in this analysis. Including these predictors will also help to control for pre-existing
di�erences in regions, such as infrastructure levels that pre-existed and could in
uence both treatment
assignment and economic outcomes, better governed regions that could secure more funding leading
to higher growth or economic shocks that may a�ect treated and untreated regions di�erently.

Due to relationships in economics being frequently multiplicative rather than additive, the variables
will be log-transformed. The log-transformed variables will reduce skewness of variables with long tails,
normalize their distributions, ensure homoscedasticity by stabilizing the variance and compresses the
scale of outliers. This transformation aligns better with economic theory because the variables will
better capture nonlinear relationships, while assume proportional relationships between variables.

To understand economic conditions of regions and the challenges in fostering equitable growth,
Table 1 o�ers critical insights into the distribution, variability and patterns in the data. The overall
average log GVA per capita is 9.82, with a relatively low standard deviation of 0.61, indicates moderate
variability in economic performance across all regions. The distribution is slight left-skewed (-0.81) that
suggests that high-performing regions are fewer relative to low-performing ones. Delving further into
the regions, treated regions appear to have a lower average GVA (9.28) than the untreated ones (10.02),
aligning well with the idea that EU subsidies are designed for regions that are economically weaker,
with lower GVA. The slight smaller standard deviation (0.53 for treated vs. 0.51 for not treated) could
indicate a homogeneity in GVA of the untreated, possibly suggesting more common characteristics
between those more-developed regions. The high kurtosis (3.65) for untreated regions indicates more
extreme outcomes than the treated regions. Moving to the overall average log employment rate -0.85
suggests that a large proportion of regions have low employment rates relative to their population, while
the slight positive skew (0.067) re
ects the few regions that have relatively high employment rates.
The slightly lower average employment rates (-0.87) of the treated regions compared to the untreated
regions’ rates (-0.83) could indicate that lower employment rates are one of the eligibility criteria for
receiving EU subsidies. The overall capital stock per capita shows an asymmetric negative skew (-1.30),
that highlights that many regions have low levels of physical capital. Con�rming the targeting of EU
subsidies toward less developed regions with insu�cient infrastructure, treated regions appear to have
lower average capital stock (10.29) compared to the untreated ones (11.22). Untreated regions exhibit
high kurtosis (8.14) signaling the presence of outliers, likely because of signi�cant industrial or �nancial
hubs. Finally the overall negative skew of gross �xed capital formation (-0.33) indicates that only a
small number of regions have relatively higher investment levels in infrastructure and physical assets.
Treated regions are falling behind in investment in buildings, machinery and infrastructure because
of the lower average gross �xed capital formation (8.08) compared to the untreated regions’ (8.86).
The slight positive skew of the treated regions (0.16) suggest that despite the low levels of investment,
there are some treated regions with signi�cant investments. These results clearly indicate that GVA,
employment rates and capital stock on average for treated regions are lower compared to untreated
regions’, which makes sense because by design these regions, have lower economic performance and
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investment levels, highlighting their eligibility for funding. In all variables, untreated regions exhibit
higher kurtosis in general, that highlights the existing outliers because of the inclusion of both highly
developed regions and those just above the funding eligibility threshold. The Jarque{Bera (JB) that
measures deviations from normality in the distribution of each variable indicates the presence of strong
outliers, especially in the untreated regions underscoring the need to account for non-normality and
outliers in the dataset.

Table 1: Summary Statistics for Key Variables by Treatment Status
Variable Group Mean Median SD Min Max Skew Kurt JB
log rgva pc Overall 9.8185 9.9593 0.6105 7.6802 11.4334 -0.8080 3.3638 966.5421

Treated (D=1) 9.2815 9.3232 0.5257 7.7203 10.5496 -0.2446 2.4995 46.8662
Not Treated (D=0) 10.0187 10.0899 0.5105 7.6802 11.4334 -1.3514 3.6550 4269.3312

log emp pop Overall -0.8456 -0.8456 0.1742 -1.4206 -0.2643 0.0670 3.0154 6.4141
Treated (D=1) -0.8709 -0.8796 0.1605 -1.3008 -0.2701 0.3660 2.7791 167.9257

Not Treated (D=0) -0.8362 -0.8309 0.1781 -1.4206 -0.2643 -0.0427 2.7905 13.1366
log kstock pc Overall 10.9742 11.2014 0.8025 7.3071 12.3624 -1.3027 4.3868 3069.2920

Treated (D=1) 10.2938 10.4474 0.8453 7.3071 11.9101 -0.5192 2.5604 121.6068
Not Treated (D=0) 11.2279 11.3333 0.6172 8.1069 12.3624 -1.9253 8.1411 10589.4755

log rgfcf Overall 8.6524 8.7381 1.0743 4.1542 12.0934 -0.3316 3.2207 172.1391
Treated (D=1) 8.0815 8.0953 0.9139 5.4653 10.7549 0.1683 2.3500 16.8155

Not Treated (D=0) 8.8658 8.9901 1.0504 4.1542 12.0934 -0.6207 3.9393 622.0192

To explore further the relationships between the variables, Figure 2 o�ers a visual depiction of
them, grouped by treatment status. The upper panels display the correlations between the variables,
the diagonal panels illustrate the density plots for individual variables and the lower panels display
the scatterplots providing initial insights about the relationship between two variables.
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Figure 2: Relationships Between Key Economic Variables by Treatment Status

Starting from the upper panels of Figure 2, the correlation values suggest that employment rates,
capital stock and gross �xed capital formation are critical drivers of economic performance. Diving
into the groups’ results a strong positive association between GVA per capita and employment rates
(0.59), capital stock per capita (0.86) and gross �xed capital formation (0.53) is suggested for untreated
regions. In more well-functioning, untreated regions, an increase in employment rates, capital stock
and investments levels will lead to GVA rising, possibly because these variables are tightly connected
to economic performance. For treated regions, while correlations are also positive between between
GVA per capita and the three variables, the slightly lower correlations (0.4 for GVA and employment
rates, 0.85 for GVA and capital stock, 0.52 for GVA and gross �xed capital formation) may reveal
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economic, structural and temporal complexities introduced by the treatment process. The lower corre-
lations can be caused from the underdevelopment in treated regions, possible distortions of the natural
economic relationships may be introduced by the subsidies, time lag in the actual treatment e�ects,
completely di�erent economic structures (reliance in low-productivity or high-productivity sectors) be-
tween treated and untreated regions, heterogeneity in the treatment impact and spillover e�ects being
\exported" from the treated regions to neighboring untreated ones. Moving to the diagonal panels,
the �rst density plot, illustrating the distribution of GVA for both treated and untreated regions,
shows that untreated regions have a higher mean and a narrower distribution compared to the treated
regions, that appears more spread out. This happens possibly because the untreated group includes
more developed, with higher GVA levels, while the treated group includes regions with heterogeneous
responses to treatment programs or underlying regional disparities. The distributions of capital stock,
con�rms that narrative as untreated regions, having a higher mean and a narrower and taller distri-
bution, represent more capital-intensive economies, whereas the 
atter and wider distribution with a
long tail of the treated regions indicate that regions respond di�erently to subsidies. Interestingly, the
distributions of gross �xed capital formation overlap signi�cantly, while the untreated regions have a
slightly higher mean, due to stable and mature economic systems supporting consistent investment
levels. In this plot the treated regions seem to be distributed normally, suggesting that the funding
led to more uniform investment behaviors, while the left skewed distribution of the untreated regions
indicate a mix of developed and a few regions struggling with investment levels. The di�erence in the
treated group’s distributions in the capital stock and gross �xed capital formation plots is clear and
is due to capital stock being a long-term measure, re
ecting the cumulative impact of investments
over time, while gross �xed capital formation, capturing the current investment 
ows, is a short-term
measure. Due to treated regions being less developed initially, they could have started with lower
baseline levels of capital stock, but funding could have allowed them to catch up in terms of gross
�xed capital formation. The similarity of the treated and untreated groups’ distributions for gross
�xed capital formation could have happened because treated regions might prioritize current invest-
ments to address immediate development needs, while the untreated, more developed regions focus
on more stable investment patterns. Additionally this convergence, in short-term investment 
ows,
could be caused by treated regions’ spillover e�ects to nearby untreated regions, while still exhibiting
di�erences in long-term capital accumulation. Finally the lower panel scatter plots are used to observe
the bivariate relationships between the variables for both groups. The scatter plot of GVA with em-
ployment rates validates the �nding on stronger correlation in untreated regions with the clustering
implying that employment has a more consistent e�ect on economic output for those regions. In the
scatter plot for GVA and capital stock, while the strong positive relationship between those variables
is validated in both groups, treated regions appear more spread out, especially in lower levels of capital
stock and untreated regions display more linear and tighter clustering indicating more well-functioning
markets. Finally in the scatter plot depicting the relationship between GVA and gross �xed capital
formation, stability and e�ectiveness in investment for untreated regions is re
ected from the tighter
clustering, while for treated regions it shows more variability possibly due to ine�ciencies in translating
investments into productivity.

Convergence vs. divergence is a constant battle in EU. The goal of European countries with
historically low GVA per capita is to narrow the gap with higher-income economies. Divergence
occurs when these countries fail to catch up with the higher-income ones. Figure 3 illustrates countries’
deviations from the median GVA, showing how they perform economically for each year relative to
the other countries. Economic outliers appear persistently above or below the median along the years.
Luxembourg as a high-income economy, consistently outperforms the median, while Bulgaria and
Romania as lower-income economies show negative deviations for many years. In general, Eastern
European countries like Bulgaria, Romania, Hungary, Poland, Slovakia and Lithuania exhibit delayed
economic convergence with Western Europe as their large negative deviations indicate, while economic
stable countries like Sweden, Germany, Belgium and France are closer to the median. Taking into
consideration that Eastern European countries were centrally planned economies in the Eastern Bloc,
with weaker infrastructure, lower levels of investment and limited access to global markets compared
to Western Europe, this delayed convergence seems reasonable. The 2008 �nancial crisis a�ected
deviations for European countries with weaker economies like Greece that saw widening negative
deviations due to its structural weaknesses, while stronger economies like Luxembourg slightly widened
the positive deviation because of its robust �nancial system. While Poland or Estonia showing signs of

25



convergence, the historical persistent economic divide between Western and Eastern Europe remains
visible.
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Figure 3: Historical Deviations from the GVA-Median per Country (1980{2022)

Diving into the regional analysis, Figure 4 illustrates the dynamic evolution of GVA in regional
economies across six time intervals post-treatment. The goal is dual; to visually examine the potential
for long-term convergence and observe possible persistent barriers faced by underdeveloped NUTS2
regions. The �rst plot marks log GVA at the year of the treatment for each of the treated regions.
Countries like Poland, Romania, Slovakia, Bulgaria, etc., appear to have lower GVA values that Spain,
Greece or Croatia. After this year, regions exhibit gradual upward movement in GVA, indicating partial
economic convergence possibly as a result of the funding. If this is the case, then the graph clearly
highlights heterogeneity in the treatment’s impact because the rate of improvement appears uneven
or stagnant. Examining the last two plots of the graph also underscores that impact accumulates and
becomes more visible over the long term because structural changes in infrastructure or productivity
take time to materialize and a�ect the economies in real time. Additionally, the fact that high-
performing regions, like regions in Spain, in the treatment year maintain their relative advantage,
suggests that pre-existing economic conditions play a central role in post-treatment trajectories. These
plots e�ectively visualize the initial idea of the need for precise policy approaches and interventions,
because an \one-size-�ts-all" approach is not applicable in this case.
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Figure 4: Log GVA Per Capita Across Six Time Intervals

5.1 GSC application

Traditional causal inference methods like DiD rely on the assumption of parallel pre-treatment trends
between treated and control regions. However, in this speci�c dataset, due to the absence of valid
rel year in control regions, as they are never treated, preventing a pre-treatment trend analysis and
because treated regions adopt treatment at varying times, further complicating trend alignment, I
will employ the GSC method to allow for non-parallel pre-treatment trends and staggered treatment
adoption. By constructing synthetic controls for each treated region and 
exibly weight control regions
and covariates I anticipate robust counterfactual estimates in such cases that traditional methods fail
to align regions’ timelines.

By applying GSC in the panel data with repeated observations for treated and control regions over
time, I will attempt to discover the impact of the intervention on log GVA per capita by estimating
the counterfactual trajectory for treated regions using the untreated donor pool, while highlighting
possible limitations of the method for this speci�c dataset. The key components for this method are
the log rgva pc, serving as the outcome variable, the treatment D cf indicator and the covariates
employment rate, capital stock per capita and gross �xed capital formation. Moreover, including unit
�xed e�ects, accounts for unit-speci�c heterogeneity and time �xed e�ects accounts for time shocks
common across units. Cross-validations ensures that the model has selected the best number of latent
factors (r) within a speci�c range, avoiding over�tting and under�tting, while to also provide con�dence
intervals for the estimated treatment e�ect the standard errors are being bootstrapped. To evaluate
this method, I will compare the observed and synthetic counterfactual outcomes, calculate the ATT
that represents the causal e�ect of treatment:

ATT =
1
NT

X

i2Treated

h
Y Observed
i � Ŷ Counterfactual

i

i
;

where NT is the number of treated units, Y Observed
i is the observed outcome for treated unit i after

the treatment and Ŷ Counterfactual
i is the counterfactual outcome for treated unit i after the treatment,

estimated using the pre-treatment data and control units, and the Mean Squared Prediction Error
(MSPE):

MSPE =
1
n

nX

i=1

(yi � ŷi)
2

to quantify how well the synthetic counterfactual replicates the observed outcomes in the pre-treatment
period, conduct Sensitivity Analysis and Placebo Tests. It is crucial to ensure that the pre-treatment
synthetic counterfactuals are reliable. This provides a solid foundation for calculating ATT followed
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by sensitivity analysis to test whether the ATT is actually robust to model assumptions. Afterwards
placebo tests will assess whether ATT is not spurious.

5.2 GSC Results

The �rst step of the model evaluation is to assess the goodness-of-�t, ensuring that the chosen model
can reliably estimate counterfactuals for treated units. To validate the model with a rank range from
0 to 5 and seven minimum pre-treatment periods, I will plot the observed vs. predicted outcomes
for treated regions. Rank (r) determines the range of numbers for latent factors or dimensions that
are being selected for the matrix factorization, to approximate the unobserved heterogeneity in the
data, while the cross-validated rank r� identi�es the optimal number of factors based on a balance
between model complexity and predictive accuracy. As illustrated in Figure 5, in the pre-treatment
period the synthetic counterfactual closely tracks the observed treated average, demonstrating that
before the treatment, the model has e�ectively captured the underlying trends of the treated regions.
This pre-treatment alignment implies that the covariates and latent factors are e�ective predictors of
log rgva pc. In the post-treatment period the observed treated average and the synthetic counter-
factual appear to diverge. The upward shift of the treated average compared to the estimated one,
indicates a positive and persistent ATT over time, highlighting the lasting impact of the the treatment
on the log rgva pc. Moreover it appears to exist some degree of variability in the observed outcomes
of individual treated regions in the plot. These variations among those regions indicate the need for
deeper exploration for potential heterogeneity in treatment e�ects. For this reason, Causal Forests
could be used to help to investigate whether speci�c subgroups of treated regions experience di�erent
e�ects systematically. Another interesting observation is that the divergence between the observed and
counterfactual averages after the treatment initially grows, reaches a peak and stabilizes afterwards,
indicating that treatment e�ect might take time to occur but eventually it stabilizes in the long term.
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Figure 5: Treated and Counterfactual Averages Over Time Relative to Treatment

For further assessment of the pre-treatment �t, I proceed to an examination of how well the
predicted values align with observed values before the treatment. Figure 6 provides a visualization of
the residuals of the model over time for the pre-treatment period. They are mainly centered around
zero, indicating a model that e�ectively captures the trends in log rgva pc before the treatment, as
the synthetic counterfactuals seem to replicate reasonably well the observed outcomes. Additionally
the lack of systematic patterns implies that unobserved factors do not introduce bias in pre-treatment
predictions. Despite the presence of few residuals exceeding 0.1 and -0.1 in earlier time periods, there
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is no evidence of heteroscedasticity over time, suggesting that the model does not require further
modi�cations to account for variance heterogeneity. As a consequence, the reliability of the synthetic
counterfactuals and therefore the good pre-treatment �t are validated from the overall pattern of the
residuals. This indicates that the model adequately captures the dynamics of the treated regions.
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Figure 6: Residual Plot of Observed vs. Predicted Outcomes in the Pre-Treatment Period

While this strong pre-treatment �t validates the construction of synthetic counterfactuals for a
single model, I wonder whether these results hold under alternative plausible model setups. For this
reason, sensitivity analysis is used to ensure that the results from the model are robust to modeling
assumptions when the range of latent factors is changed. This way allows to check the sensitivity of
ATT when complexity of the model is changing. The results for di�erent GSC models are displayed in
Table 2, and were consistent across 100 runs to reinforce con�dence in the robustness of these �ndings.

Table 2: Model Comparison for Varying Rank Range and Pre-Treatment Periods
Model # Rank Range (r) Min. Pre-Treatment Periods (min:T0) Cross-Validated Rank (r�) MSPE ATT Avg (Estimate) P-Value

1 0{2 2 1 0.0049 0.1317 0.009
2 0{3 5 1 0.0049 0.1317 0.009
3 0{5 7 2 0.0018 0.0908 0.210
4 0{3 7 2 0.0018 0.0908 0.213

The thought process for comparing di�erent models is that di�erent rank range (r) and minimum
long enough pre-treatment periods (min.T0) to model counterfactual trends will o�er di�erent model
results, adapting di�erently to di�erent situations. Selecting an appropriate rank range is critical be-
cause lower ranks are easier in terms of interpretabilty but they could miss some of the underlying
complexity, while higher ranks can capture more nuanced patterns in the data, sacri�cing some inter-
pretability. By requiring a minimum number of pre-treatment periods for treated units the min.T0
parameter ensures robust estimation. Setting this parameter too low could lead to under�tting because
of possible inclusion of insu�cient pre-treatment data, while a high min.T0 could exclude valuable
treated units.

For the �rst model, with a rank range from 0 to 2 and two minimum pre-treatment periods required,
the average ATT estimate is positive (0.1317), having a statistically signi�cant positive e�ect on log
GVA per capita (p-value = 0.009 < 0.05), meaning that the treatment is associated with a 13.17%
increase in the log GVA per capita. The �rst plot of the Figure 7 illustrates this estimated ATT
before and after the treatment. In pre-treatment periods, with p-values higher than 0.05, ATT is
close to zero and not statistically signi�cant, suggesting no strong evidence of anticipatory e�ects.
This means that there is no strong evidence that log GVA’s path has started to change before the
treatment implementation (dashed vertical line at 0), indicating that the parallel trends assumption
might hold. Anticipatory e�ects can make it unclear whether observed post-treatment e�ects are due
to the treatment itself or the pre-treatment adjustments made in anticipation of it. After treatment,
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ATT becomes increasingly signi�cant and positive, before experiencing a decline at period 23. This
gradual improvement over time underscores the delayed bene�ts of the treatment, but the widening
con�dence intervals indicate either great variability or limited data for those periods.

Moving forward to the second model, with a rank range from 0 to 3 and �ve minimum pre-treatment
periods required, similarly the average ATT estimate is positive (0.1317), with a statistically signi�cant
e�ect on log GVA per capita (p-value = 0.009 < 0.05), suggesting that the treatment is similarly
to the �rst model associated with a 13.17% increase in log GVA per capita. The second plot in
Figure 7 illustrates this estimated ATT. In the pre-treatment period, ATT remains close to zero, with
p-values higher than 0.05, indicating no statistically signi�cant e�ects prior to treatment, providing
further evidence that the parallel trends assumption is reasonable for this speci�cation (no indication
of anticipatory e�ects) and the treatment itself, rather than pre-treatment adjustments, is likely the
primary driver of the observed post-treatment changes. After the treatment, ATT becomes positive
and statistically signi�cant, indicating a sustained improvement in log GVA per capita over time.
Interestingly, compared to the �rst model, the con�dence intervals in the long term become slightly
narrower, suggesting that the increased number of pre-treatment periods from 2 to 5, contributes to
more precise estimates. Despite this, there is a similar decline in ATT is observed around period
23, accompanied by widening con�dence intervals, probably underscoring some variability or limited
observations in the long term.

Observing the third and default GSC model, with a rank range from 0 to 5 and seven minimum pre-
treatment periods required, the average ATT estimate is lower (0.0898) and not statistically signi�cant
(p-value = 0.210 > 0.05). For this model, while the treatment is associated with an increase in log
GVA per capita, the evidence appears to be weaker than in the �rst two models. In Figure 7 plot, in
the pre-treatment period, ATT remains close to zero reasserting the absence of anticipatory e�ects.
As evidenced by the lower MSPE (0.0018 < 0.0049), the longer pre-treatment period (from 5 to 7)
achieves to improve the reliability of the synthetic counterfactual, strengthening the argument that
the parallel trends assumption is satis�ed. After the treatment, ATT decreases and exhibit negative
values for the �rst 9 periods. This decline could happen because many interventions have lagged
e�ects (reallocating resources or learning curves) or because treated regions may be more vulnerable
to external shocks leading to synthetic counterfactual overestimating what would have happened in
the absence of treatment. Additionally in case of signi�cant heterogeneity, the ATT estimates for
early post-treatment periods might be less stable, resulting to those negative values. Afterwards, the
ATT gradually increases and while it remains positive and stabilizes over time, it is not statistically
signi�cant. This could happen because over time, treatment bene�ts accumulate and outweigh initial
adjustment costs or due to the model adjusting to new post-treatment equilibrium and synthetic
counterfactual aligns better with the observed outcomes as illustrated in Figure 7. For this model the
average ATT is lower and more conservative than the �rst models (0.0908 < 0.1317), likely due to the
inclusion of a longer pre-treatment period. Con�dence intervals appear to widen considerably in the
long term, probably indicating increased variation or limited precision in those long term estimates.

Finally for the fourth and last model, with a rank range from 0 to 3 and seven minimum pre-
treatment periods required, the average ATT estimate is also 0.0898 and not statistically signi�cant
(p-value = 0.213 > 0.05). In the pre-treatment period, ATT exhibits no signi�cant deviations from
0, supporting the validity of the parallel trends assumption. The similarly low MSPE (0.0018) sug-
gests a reliable synthetic counterfactual, while compared to the previous model, the lower rank range
introduces less complexity with a similar level of robustness. Post-treatment, ATT exhibits a similar
pattern over time with the previous model, as it remains negative for the �rst 9 periods, becomes pos-
itive but insigni�cant and stabilizes in the long term. The con�dence intervals are slightly narrower
in the early post-treatment periods, indicating improved precision, probably because of the reduced
model complexity. Despite this early trend, the intervals become wider in later periods, highlighting
greater variability or limited data.
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Figure 7: GSC models: Average Treatment e�ect on the Treated by Pre-treatment Periods and Rank
Ranges

Therefore, the sensitivity analysis results highlight that for the �rst two models the con�dence
intervals suggest decent precision combined with greater uncertainty in later periods, whereas the longer
pre-treatment periods of the last two models provide more conservative and robust estimates, even
though con�dence intervals become wider especially in later periods. However the consistent positive
ATT across all four models indicates that the treatment e�ect is robust to variations in pre-treatment
periods and rank ranges. Models 1 and 2, with r� = 1, represent simpler structures, while models
3 and 4, with r� = 2, capture additional variability, enabling the assessment of whether increasing
model complexity enhances predictive accuracy without over�tting, as shown by their respective MSPE
values. Notably, comparing model’s 3 and 4 MSPE values (0.0018) to models’ 1 and 2 MSPE results
(0.0049) suggests that more pre-treatment periods or more expanded rank range improve the model’s
�t. The considerable improvement in MSPE when increasing min:T0 from 5 to 7 highlights not only
the is sensitivity of the MSPE to the pre-treatment period length compared to small changes in the
rank range, but also the importance of a su�cient number of pre-treatment periods for more robust
inference. Hence, model 3 is preferred due to obtaining the same high level of predictive accuracy as
Model 4 (MSPE = 0.0018) and presenting greater 
exibility for capturing complex data dynamics with
a wider rank range (0-5 > 0-3).

Synthetic control model’s central assumption is that the synthetic counterfactual created for treated
regions mimics their unobserved outcomes in the absence of treatment. Failing to meet this assumption
can lead to spurious treatment e�ects. For determining whether the observed ATT re
ects the true
causal impact of the treatment or whether it occurred due to random noise, over�tting, violations of
assumptions or unobserved confounders, placebo tests with \fake" treatments are applied. The process
of creating placebo datasets is repeated 100 times to reduce the impact of random variability in placebo
treatment assignments, giving more stable and reliable results. If placebo tests result in signi�cant
ATT estimates, there is evidence that the true ATT is likely to be spurious, casting doubts on the
validity of the estimated causal e�ect. Since the placebo-treated regions were not really treated, the
model should estimate little to no treatment e�ect for them. Therefore, ideally, the ATT averages are
expected to be centered around zero. In Figure 8, I illustrate the magnitude of placebo ATT averages
as well as their comparison to the real ATT, as a means of validating the GSC model’s reliability and
the strength of the causal conclusions. As it is expected due to the randomly assigned treatments, the
generated ATT distribution in Figure 8 is centered around zero with a narrow spread for consistent
results across placebo tests. The robustness of the placebo test is also supported from the lack of
extreme outliers. The real ATT (0.0908) lies far to the right of the placebo distribution, indicating
that the treatment e�ect that is observed in the real data is remarkably di�erent from the placebo
e�ects and is unlikely to be due to chance, validating that the observed ATT is not spurious and it
likely re
ects an actual treatment e�ect.
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Additionally, the comparison of the MSPE in Figure 9 of 100 placebo iterations with the real MSPE
will be used to evaluate model’s robustness and the credibility of the ATT. As a general rule, for the
model to capture the treatment e�ect accurately and not over�t to noise, the real MSPE is expected
to be lower than the MSPE of most placebo-treated regions. Remarkably, Figure 9 shows that the
real MSPE (0.0018), serving as the benchmark, lies slightly above the general distribution of placebo
MSPEs that range from approximately 0.0009 to 0.0021. This wide range may re
ect heterogeneity
in the untreated regions originating from unobserved factors not su�ciently captured by the synthetic
counterfactual. Although the real MSPE is not distinctly lower than the majority of placebo MSPEs,
the absence of extreme deviations in most of the cases suggests that the GSC model has a reasonable
level of �t in capturing the underlying data patterns.
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Figure 9: MSPE Values for Placebo Scenarios and Real MSPE
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However, given that GSC models are not explicitly designed to account for potential heterogeneity
in treatment e�ects, combined with the wide range of MSPE values in the placebo tests (0.0009
to 0.0021), that signals the presence of unobserved factors in
uencing outcomes, their reliance on
adequate pre-treatment periods for constructing reliable counterfactuals, that limits generalizability,
and their inability to capture potential nonlinear interactions between covariates and treatment e�ects,
the incorporation of Causal Forests in the analysis could o�er a more comprehensive understanding of
the treatment e�ects.

5.3 Causal Forests application

Starting from the assumption that treatment e�ects are not uniform but di�er based on observed
covariates, the objective of this application is to identify whether treatment e�ects actually vary across
subgroups and answer to the question \Does the impact of the EU funding di�er by region?". The
dataset for this analysis has already received meticulous preparation as part of the GSC modelling
process and examination. Log-transformed real GVA per capita serves as the outcome variable, log-
transformed employment rate, log-transformed capital stock per capita and log-transformed gross �xed
capital formation as the covariates while the binary variable Dcf re
ects whether a region received
funding or remained untreated. To achieve both robust model evaluation, by testing on unseen data
and reliable treatment e�ect estimation, I will apply a strati�ed splitting by treatment status. The
rationale behind this is to ensure that any imbalance in treatment assignment does not skew results in
either the training or testing set. Moreover similar treatment proportions can improve the ability of
the causal forest model to generalize better to new data and con�rm that treatment e�ect estimates’
heterogeneity is not biased by di�erences in treatment-control ratios between splits. Consequently I
will partition the dataset into two subsets (Dcf = 1 and Dcf = 0) and within each of these subsets,
I will randomly assign observations to training and testing sets based on a 80/20 splitting rule (80%
training and 20% testing). As a �nal step, in order to create the �nal datasets, I will merge the strati�ed
training and testing splits. As depicted in Table 3, the original dataset’s proportions are 72.8% for
treated and 27.2% for control group and in both training and testing datasets, these proportions
are successfully maintained, re
ecting that the strati�ed splitting has preserved the treatment-control
balance.

Table 3: Proportions of Treatment and Control Groups in Original, Training and Testing Datasets
Dataset D cf = 0 (Control) D cf = 1 (Treated) Total Observations
Original 0.728 0.272 8456
Training 0.728 0.272 6765
Testing 0.729 0.271 1691

Furthermore, to avoid over�tting or under�tting when capturing the heterogeneity in treatment
e�ects, it is crucial to properly tune the hyperparameters. The size of the forest is controlled by the
number of trees. As the number increases, the stability improves (less variance) but computational
time also increases. The minimum number of observations per leaf is speci�ed by the minimum node
size. Small node sizes allow �ner subgroup splits but may lead to over�tting. Maximum depth limits
the depth that a tree is able to grow. As depth increases, more complex splits are allowed but there is
a risk of over�tting. Finally, the sample fraction is the dataset’s proportion that is used to grow each
tree, ensuring adequate diversity among trees. To select the optimal values for hyperparameters that
both minimize the error in treatment e�ect estimates and maximize generalizability, I will leverage
cross-validation. After specifying a range for the number of trees (500, 1000, 1500, 2000, 4000), for
the minimum number of observations in each leaf (5, 10, 20) and for the proportion of data used for
each tree (0.2, 0.3, 0.4, 0.5), I will separate the training set into 10 equal-sized folds and use the 9
folds to train the model and the remaining fold for validation. On the validation fold I will predict
treatment e�ects and compute the MSE of the estimated treatment e�ects. Finally, after calculating
the average MSE across all folds for every hyperparameter combination, the hyperparameters with the
lowest average MSE will be chosen. For these hyperparameter combinations, the range of the average
MSE values is between 99.46778 and 99.71335. The lowest MSE is achieved with 1000 number of trees,
10 observations in each leaf and 0.5 of data used for each tree.

Inference in Causal Forests is facilitated by the use of sample-splitting and asymptotic approxi-
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mations. In reference to the previous discussion on Causal Forest application, the algorithm expands
the Random Forest methodology (minimizing prediction error) to identifying splits that optimize the
heterogeneity of the CATE within each node, by constructing a group of honest, randomized decision
trees. For unbiased estimates of �(X), honest splitting separates the dataset (Y;X;D) into two disjoint
parts: one to determine the splitting structure of the trees and another to estimate treatment e�ects
within the leaves. Causal Forest algorithm builds on the concept of recursive partitioning. Each tree
in the forest is grown recursively by partitioning the data based on covariates X aiming to maximize
the heterogeneity in treatment e�ects across the resulting child nodes and to minimize the within-leaf
variance of �̂ for improving the precision in the treatment e�ect estimation. Afterwards, for each leaf
L of a tree, the treatment e�ect �̂L is estimated as:

�̂L =
1

jLtreatedj

X

i2Ltreated

Yi �
1

jLcontrolj

X

i2Lcontrol

Yi

where Ltreated and Lcontrol are the sets of treated and control units in the leaf, respectively. Eventually,
once the forest is constructed, the �nal estimate of �(X) for a new observation X is acquired by
averaging �̂L over all trees in the forest:

�̂(X) =
1
B

BX

b=1

�̂b(X)

where B is the number of trees.
A core requirement for reliable inference is the estimation of the variance of treatment e�ect es-

timates. For CATEs, the in�nitesimal jackknife (IJ), previously introduced, is used to estimate the
variance and construct con�dence intervals. Since causal forests rely on bootstrapped samples for tree
construction, variance estimation captures the randomness introduced by bootstrapping and aggre-
gates the variability across trees. The IJ successfully quanti�es the uncertainty in treatment e�ect
estimates, while ensuring that, even in high-dimensional settings, con�dence intervals adequately re-

ect variability.

GSC is primarily designed to capture time-relative patterns and provide robust estimates of ATT
across time periods. However, due to Causal Forest’s inherent design for static treatments, to assess the
e�ectiveness model, I will calculate ATE and CATE to analyse heterogeneity and visualize treatment
e�ects by subgroups. Although Causal Forests are not ideal for modelling time-varying treatment
e�ects since the temporal structure isn’t explicitly modelled, I will aggregate individual CATEs for
multiple time periods and multiple regions to calculate the ATT across time periods based on regions’
individual characteristics.

For each time period, each ATT is calculated as:

ATT =
1
N

NX

i=1

CATEi

where N is the number of treated units (Dcf = 1) and CATEi is the Conditional Average Treatment
E�ect (predicted by the causal forest) for treated unit i in rel year = j.

The ATE is the average of the treatment e�ects across the entire population (both treated and
untreated units):

ATE =
1
N

NX

i=1

�̂i;

where N is the total number of units (treated + untreated) and �̂i is the estimated treatment e�ect
for individual i.

As formerly discussed, CATE measures the treatment e�ect conditional on a set of covariates X,
and is de�ned as:

CATE(X = x) = E[� j X = x];

where � is the individual treatment e�ect.
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5.4 Causal Forests Results

5.4.1 Evaluating Overlap Assumption

As previously mentioned, the overlap assumption for the covariate distributions of treated and control
groups is critical in causal inference. The overlap is evaluated by �tting a logistic regression model
for propensity scores, that capture the likelihood of receiving treatment based on observed covariates.
For further improvement of the speci�cation of the propensity score model while addressing potential
non-linearities, a quadratic term for log kstock pc pre and is included. To ensure that treatment e�ect
estimation is performed within areas with adequate overlap, observations that were outside of a com-
mon support region (94.19%) were trimmed. Figure 10 reveals limited overlap between treated and
control groups before and after trimming, as the control group is overrepresented in the lower propen-
sity score range indicating that wealthier regions were systematically less likely to receive treatment,
resulting in limited generalizability of the estimated treatment e�ects.
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Figure 10: Propensity Scores Distributions Before and After Trimming

The model enabled the formation of matched groups with improved covariate balance. After
this matching, covariate balance is used to ensure the comparability between treated and control
groups. Standardized Mean Di�erences (SMDs) quantify whether treated and control groups have
similar distributions for the covariates. Table 4 shows that the balance (SMD) is improved for most
variables, with log emp pop pre achieving balance 0.0698. However, moderate imbalances persist for
log kstock pc pre with balance -0.5105 and its quadratic term’s balance -0.5188, suggesting that there
are inherent structural di�erences between treated and control groups, that re
ect the natural system-
atic under-representation of wealthier regions in treated group.

Table 4: Covariate Balance Before and After Matching
Covariate Means (Treated) Means (Control) SMD (Before) SMD (After) Variance Ratio
log emp pop pre -0.8709 -0.8821 -0.2165 0.0698 0.7203
log kstock pc pre 10.2938 10.7253 -1.1051 -0.5105 1.4583
log rgfcf pre 8.0815 8.3234 -0.8533 -0.2634 0.6357
I(log kstock pc pre^2) 106.6756 115.5215 -1.1595 -0.5188 1.4254

However, due to the nature of the data a modi�cation with aggressive trimming (retain only propen-
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sity scores between 0.2 and 0.8) or employing additional covariates masks important heterogeneity in
treatment e�ects, especially in cases where inherent di�erences are deep-rooted to the population.
Therefore, my analysis proceeds, cautiously, with the application of the causal forest model to the en-
tire dataset aiming to assess its ability to handle regions with imperfect overlap and inherent covariate
imbalances. Validating this decision, Figure 11 reveals that CATE estimates increase gradually across
the overlap groups, while exhibiting no erratic behaviour, no excessive variation or instability in low-
overlap groups. Hence, this serves as an indication that the observed heterogeneity is relevant rather
than an extrapolation bias’ outcome. Moreover, as a �nal robustness check, in Figure 27 (Appendix)
I assess whether CATE estimates manifest extreme variation in low and high-propensity score regions
and demonstrate that treatment e�ects do not su�er from extreme extrapolation in the tails of the
propensity score distribution.
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Figure 11: Conditional Average Treatment E�ects Estimates Across Overlap Groups

In essence, instead of attempting to eliminate these di�erences, the model is employed to capture
treatment e�ect heterogeneity within the observed data. This procedure aims on insightful knowledge
into how e�ects vary across subpopulations with well-de�ned covariate pro�les rather than making
generalized causal claims. Although the �ndings have limited applicability to the full population as
heterogeneity estimates may not be reliable for subgroups that are not adequately represented, the
focal point of my approach predominantly lies on demonstrating the applicability of ML for causal
inference in real-world datasets where methodological assumptions, such as perfect overlap, are rarely
satis�ed.

5.4.2 Training Causal Forests

Since the focus is on reliable and interpretable results about heterogeneity, I will leverage a parsi-
monious and simple model, using only pre-treatment covariates. First and foremost, the inclusion
of post-treatment covariates could induce post-treatment bias to the model because those covariates
are essentially a�ected by the treatment. Furthermore, in Causal Forests, pre-treatment covariates
are guiding the partitioning process, ensuring that the model is well-calibrated and avoids over�tting.
These covariates provide the baseline characteristics of the regions and without them the model lacks
the necessary structure to successfully identify treatment heterogeneity. The selection of covariates in
the pre-treatment period to train the Causal Forest model follows a structured econometric thought
process that is likely to explain treatment e�ect heterogeneity while maintaining interpretability and
robustness. After training the model, I will evaluate the Out-of-Bag (OOB) CATE estimates distri-
bution for the training set, for an initial heterogeneity inspection, as it yields engaging insights about
the treatment e�ects heterogeneity. The OOB CATE predictions are considered \honest" estimates
that are derived during model training. The histogram in Figure 12 shows a right-skewed distribution
of the estimated CATEs, while most of the observations are predominantly concentrated between 0.2
and 0.3. The model suggests that treatment e�ects are not uniform across regions while skewness indi-
cates that the majority of regions experience moderate treatment e�ects and only a smaller subset of
\high responders" experience stronger e�ects. This variation emphasizes that the treatment’s impact
depends on covariates and raises the profound question \Is the observed heterogeneity genuine?".
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Figure 12: Out-of-Bag Conditional Average Treatment E�ects for the training dataset

5.4.3 Quantifying Treatment Heterogeneity

Firstly, in order to evaluate the model, Best Linear Projection (BLP) is leveraged. As a linear re-
gression of the CATEs on covariates, it estimates how well those covariates explain the variation in
treatment e�ects. The goal is to identify drivers of treatment e�ect heterogeneity. Table 5, provides
insights about the contributions of those covariates and the quality of the model’s predictions. The
log emp pop pre, log kstock pc pre and log rgfcf pre variables are statistically signi�cant (p-value <
0.001) and stand out as important contributors as they signi�cantly explain treatment e�ect hetero-
geneity, with estimates 0.2522, -0.1388 and 0.0392, respectively. These estimates indicate that higher
employment levels experience stronger positive treatment e�ects, whereas the negative coe�cient for
log kstock pc pre re
ects the average decline in treatment e�ect for every 1-unit increase in the capital
stock per capita. These results could reveal diminishing marginal impact of interventions in wealthier
or better-capitalized regions, where infrastructure that already pre-exists, reduces the scope for ad-
ditional bene�ts. Additionally, the positive log rgfcf pre’s coe�cient suggests that investments in
infrastructure and �xed capital are associated with greater treatment e�ects.

Table 5: Best Linear Projection of the Conditional Average Treatment E�ect (CACE)
Variable Estimate Std. Error t value Pr(> jtj)
(Intercept) 1.6558 0.1177 14.065 < 2.2e-16���
log emp pop pre 0.2522 0.0524 4.8111 1.540e-06���
log kstock pc pre -0.1388 0.0102 -13.582 < 2.2e-16���
log rgfcf pre 0.0392 0.0089 4.3844 1.184e-05���

Note: ��� 0.001, �� 0.01, � 0.05, : 0.1, 1. CI are cluster- and heteroskedasticity-robust (HC3)

While BLP provides insights into the linear relationship between covariates and treatment hetero-
geneity, the variable importance scores, visualized in Figure 13, for each variable will operate as a
quantitative assessment metric measuring the magnitude of the non-linear contributions of each co-
variate to the model’s ability to predict treatment e�ects. However, it is critical to highlight that these
scores do not re
ect the causal impact of the covariates on treatment e�ects but rather the relative
contribution of each covariate to splitting the data during tree construction. The log kstock pc pre
is the most important variable, since it contributes approximately 64.9% of the total importance, re-
inforcing the BLP result while re
ecting that regional disparities in capital stock heavily in
uence
heterogeneity in treatment e�ects. While employment and infrastructure are in
uential, they play a
secondary role as they collectively account for the remaining total importance.
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5.4.4 Model Calibration

To validate the reliability of the entire model, I will employ calibrated orthogonal regression with
Best Linear Predictor method that was formalized in Chernozhukov et. al. in 2018, to evaluate
whether the mean forest prediction and the di�erential prediction are well-calibrated with the observed
treatment e�ects. Mean forest prediction is the average predicted treatment e�ect (ATE) for all units
and represent the global treatment e�ect, whereas di�erential forest prediction is each unit’s CATE
deviation from the mean forest prediction (CATE � ATE) that captures the heterogeneity in treatment
e�ects across units. For a forest to be considered well-calibrated the coe�cients for the predictions
should be close to 1. The calibration process involves regressing the estimated CATEs on transformed
outcomes that represent actual treatment e�ects from held-out data, in order to evaluate how well
those estimated CATEs align with observed treatment heterogeneity:

CATEi � ��� + � (�̂(Xi)� ��)

where, � is the mean forest prediction estimate and � is the di�erential forest prediction estimate.
Table 6 shows the calibration results for the trained model. The mean forest prediction coe�cient is
very close to 1 (0.994), which indicates that the model captures adequately the overall ATE across the
data and is able to provide accurate predictions of treatment e�ects on average, while the small standard
error (0.02578) further reinforces con�dence in the precision of this estimate. Additionally, con�rming
that the model e�ectively detects and captures treatment e�ect heterogeneity, the di�erential coe�cient
for the CATEs is 1.150 and statistically signi�cant at 0.001 level. The value’s divergence from zero,
provides adequate evidence that there is a positive correlation between the estimated CATEs and the
true treatment e�ects, leading to the conclusion that as the estimated CATEs increase, the actual
treatment e�ects also increase. Thus, these results, not only provide robust evidence that treatment
e�ect heterogeneity exists (� > 0), but also that the model is capable of identifying it and di�erentiating
between treated regions with diverse responses to the treatment.

Table 6: Calibration Results for Causal Forest Model
CF Model Estimate Std. Error t value Pr(>t)
Mean Forest Prediction 0.99404 0.02578 38.547 < 2.2e-16���
Di�erential Forest Prediction 1.15020 0.05731 20.068 < 2.2e-16���

Note: ��� 0.001, �� 0.01, � 0.05, : 0.1, 1

5.4.5 Testing Causal Forests

To ensure that the model not only performs well on the train data but also it does not fail to generalize
well to new, unseen data, I will validate the results on the test set before proceeding to detailed
heterogeneity analysis. This methodical process ensures that the heterogeneity in treatment e�ects
that was estimated, is not an artifact of over�tting but instead it re
ects authentic patterns within
the underlying data. First and foremost, I apply the trained Causal Forest model to the test dataset
to leverage the already estimated heterogeneity structure that was earlier learned from the training
phase. Consistency is ensured by mirroring the structure used during training with the use of relevant
pre-treatment covariates for prediction. Afterwards each observation on the test set is assigned with a

38



predicted treatment e�ect. For the validation process I leverage the Kolmogorov-Smirnov (KS) test as
well as descriptive statistics of the CATE distributions across the training and test sets. The KS test,
introduced by Kolmogorov in 1933 and extended by Smirnov in 1948, is a non-parametric statistical
test for assessing whether two empirical distributions di�er signi�cantly, by measuring the maximum
absolute di�erence between the cumulative distribution functions (CDFs) of two samples. In this
test, the null hypothesis assumes that the two samples come from the same distribution, whereas the
alternative hypothesis indicates that the distributions statistically di�er. In this case, the test will be
leveraged for the comparison of the distributions of predicted CATEs in the training and test sets.
The KS statistic (D) is 0.090 and it indicates that the maximum absolute di�erence between the
training and test CATE distributions is 9%, whereas the signi�cant p-value (9:683e � 12) rejects the
null hypothesis that the two distributions are identical and indicates that this di�erence is unlikely
due to random chance. However, while statistical signi�cance is important, it does not imply practical
signi�cance. The density plot of CATE distributions in Figure 14 reveal a di�erent viewpoint. Despite
the existence of slight variations, the overall shape of the two distributions is largely maintained,
indicating that the model preserves reasonable generalization in spite of the formal rejection of the
null hypothesis.
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Figure 14: Distributions of Conditional Average Treatment E�ects across the training and test sets

Complementing the KS test, Table 7 presents the descriptive statistics for additional intuition
into the di�erences in training and test predicted CATEs. The mean CATE values appear almost
identical for training (0.2782) and test (0.2827) sets which indicates that the model does not over-
/under-estimate treatment e�ects in new data, while the slightly lower standard deviation in the test
set (0.0876 < 0.0911) suggests that the model produces more dense treatment e�ect estimates in out-
of-sample predictions, to some extent. Moreover, the higher skewness for the test set suggests that
extreme positive CATEs occur more frequently in that set, while kurtosis being also higher for the test
set indicates heavier tails potentially due to great presence of extreme treatment e�ect estimates.

Table 7: Descriptive statistics for the predicted CATE in the training and test datasets
Dataset Mean SD Skewness Kurtosis
Training 0.2782 0.0911 1.1014 3.5473
Test 0.2827 0.0876 1.1667 3.8135

Additionally, the covariate balance in Table 8 appears to be also well preserved, indicating that
any observed di�erences in CATE predictions re
ect genuine heterogeneity in treatment e�ects and
are not driven by changes in underlying features, con�rming that the test set contains systematically
similar regions with the training set.
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Table 8: Covariate Balance Between Training and Test Sets
Variable Training Mean Test Mean
log emp pop pre -0.8600 -0.8589
log kstock pc pre 10.866 10.881
log rgfcf pre 8.5178 8.5207

To verify that the heterogeneous treatment e�ects are meaningful in the test set for predicting the
outcome, I run the simple validation regression of log rgva pc = �0 +�1�CATE + ". Table 9 exhibits
the results of the regression, where the coe�cient of CATE (�1) is strongly signi�cant as p-value is
smaller than 2.2e-16. This statistical signi�cance suggests that there is a highly systematic relationship
between estimated treatment e�ects and log rgva pc. The magnitude of the e�ect (-4.2535) reveals that
a one-unit increase in predicted treatment e�ects corresponds to a signi�cant decrease in log rgva pc.
The signi�cance and size of the coe�cient con�rms that the model captures relevant heterogeneity in
treatment e�ects, even in a limited-overlap data set-up.

Table 9: Regression Results: Predicting log rgva pc using CATE
Variable Estimate Std. Error t-Value Pr(>t)
Intercept 11.0194 0.0423 260.77 < 2.2e-16���
CATE -4.2535 0.1443 -29.49 < 2.2e-16���

Note: ��� 0.001, �� 0.01, � 0.05, : 0.1, 1

Finally, as preliminary step before the following heterogeneity analysis, by grouping the observations
of the training and test datasets into quartiles based on their CATEs, I aim to initially examine
how treatment e�ects vary across subpopulations. This approach also serves as a robustness check to
evaluate whether the estimated treatment e�ects are persistent in an independent sample. In Figure 15
the �rst quartile contains the observations with the smallest predicted CATEs and the fourth quartile
hold the observations with the largest predicted CATEs. For each quartile I estimate the ATE as the
mean of the predicted CATEs and the standard errors using the IJ variance estimates. The closely
aligned train-test ATE estimates and the overlapping con�dence intervals, validate that the estimated
heterogeneity is unlikely due to over�tting and that the model generalizes well to new, unseen data.
Notably, higher quartiles exhibit larger estimates due to the model successfully capturing treatment
heterogeneity. The observed monotonic increase in ATEs across the quartiles con�rms the expectation
of stronger treatment e�ects being associated with higher predicted CATEs.
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Figure 15: Average Treatment E�ects within Conditional Average Treatment E�ects’ quartiles for
both training and test sets
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5.4.6 Hyperparameter Sensitivity Analysis

In reference to the previous selection of optimal hyperparameters through cross-validation aiming to
minimize the MSE, it is highly important to verify the robustness of the ATE estimates and ensure
that they are not overly sensitive to speci�c parameter choices. High sensitivity would mean that
the observed results are artifacts of speci�c parameter settings and that they do not re
ect actual
relationships. Therefore, I conducted a sensitivity analysis by varying key hyperparameters, such as
the minimum node size (5, 10, 20) and the number of trees (500, 1000, 1500, 2000, 4000), using the same
range of values tested earlier for minimizing the MSE. With variation no greater than –0.02, the results
in Figure 16 validate the stability of ATE estimates across di�erent con�gurations, indicating that the
�ndings are consistent, reliable and not driven by speci�c model con�guration settings. Speci�cally,
the ATE estimates are fairly stable across di�erent minimum node sizes, especially for minimum node
size greater than 10, striking a balance between capturing local heterogeneity and ensuring reliable
average estimates.
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Figure 16: Average Treatment E�ects Sensitivity to Hyperparameters

5.4.7 Advanced Heterogeneity Analysis: Interactions and Subgroup E�ects

While the average treatment e�ect provides a broad overview, it fails to capture the rich complexity
of how di�erent regions respond to the same intervention. Some regions could prosper as they turn
targeted funding into signi�cant growth, while others could stagnate and get trapped in structural lim-
itations dampening their progress potential. Therefore, for more equitable and e�ective interventions,
it is critical to embrace the phenomenon of non-uniform treatment responses.

As previously discussed, a single-peaked, symmetric distribution, centred around the average e�ects
is expected in cases where treatment e�ects are homogeneous across regions. However, the histogram
in Figure 17 reveals a bimodal distribution of CATEs, with two distinguishable peaks, verifying that
the treatment e�ects are not homogeneously distributed across regions. The �rst peak on 0.2 suggests
that this subset of regions shows moderate e�ects while the second peak on 0.27 indicates a subset with
slightly higher e�ects. Therefore, these peaks reveal the existence of two distinct subpopulations that
experience di�erent levels of treatment e�ects. Moreover, the presence of high responders who bene�t
more than average (CATE > 0.4) is con�rmed from the noticeable right-skewness of the distribution
(mean is 0.279 and median is 0.264) and a smaller peak around 0.48. This further supports that
there are indeed systemic di�erences among treated regions, as some of them experience remarkably
large treatment e�ects, while most regions experience moderate treatment e�ects. Additionally, the
minimum 0.108 and maximum 0.516 that indicate a broad range of estimated e�ects, suggest that a
one-size-�ts-all policy approach may not be ideal.
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Figure 17: Overall Distribution of Conditional Average Treatment E�ects

For further investigation of the heterogeneity that became evident from the above plot and to
gain a more intuitive sight of the distribution, Figure 18 presents the grouping results of hierarchical
clustering applied to the estimated CATEs. Prior research has demonstrated the e�cacy of hierar-
chical clustering in regional policy evaluation in a panel data setting (Altuntas, Selim, & Altuntas,
2022). Hierarchical clustering is an unsupervised machine learning technique that groups observa-
tions into clusters based on similarity, particularly useful for identifying latent group structures in
high-dimensional data (Hastie, Tibshirani, & Friedman, 2009). In the context of my analysis, I will
apply hierarchical clustering to the estimated CATEs for the identi�cation of meaningful subgroups of
regions. Due to the ability of hierarchical methods to uncover natural groupings within economic data,
the three di�erent response groups that are constructed will be leveraged to identify heterogeneity pat-
terns within the heterogeneous distribution of CATEs. At �rst, a distance matrix is constructed, using
the Euclidean distance between CATE values. Following that, to ensure compact and well-separated
clusters, Ward’s method minimizes the variance within each cluster while iteratively merges clusters,
creating eventually three clusters/subgroups. Low responders with values from 0.1 to 0.25 create a
clear left-skewed cluster, indicating a group of regions that bene�t less from treatment. The neutral
responders from 0.26 to 0.31, is the group with moderate treatment e�ects, centered around the mean
CATE. On the right, the group of high responders (0.32-0.53) appear to be the most dispersed one,
while it experiences strong positive treatment e�ects, suggesting that the intervention is exceptionally
bene�cial for this subset of regions.

In essence, while there are regions that treatment has a moderate but positive e�ect, the presence
of outliers on either side of the distribution re
ects the necessity of targeted analysis. Low responders
could be regions where intervention was ine�ective due to structural barriers, such as capital saturation
leading to low capital absorption, as described in the diminishing returns framework (Solow, 1956).
To bene�t from interventions, these regions may require pre-intervention support, such as training
programs. In contrast, high responders could include regions with a strong entrepreneurial culture and
high employment elasticity, allowing �rms and workers to respond more e�ectively to interventions,
making them ideal candidates for scaling current interventions.
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Figure 18: Histogram of Conditional Average Treatment E�ects clustered into three response categories

As a consequence, this considerable variation in treatment e�ects naturally raises the question;
\What determines whether a region is a high or low responder?". For a more detailed examination
and a granular view I examined the dataset by CATE deciles, with 846 observations per decile. By
quantifying the observed heterogeneity in Table 10, I aim to investigate whether treatment e�ects are
driven by economic structure. If this is the case, systematic di�erences in covariates across CATE
deciles, should be apparent for the three variables. The table shows the mean values for each variable,
across the 1st and 10th CATE deciles, with the 1st decile representing regions with the weakest
treatment e�ects and the 10th decile regions with the strongest. This comparison highlights the
distinct economic characteristics of regions at the extremes of treatment e�ect heterogeneity. Indeed,
the reported means (with the standard deviations in the parentheses) indicate systematic di�erences
in economic characteristics between regions with low and high CATEs and the p-values from the two-
sample t-tests con�rm the statistical signi�cance of those di�erences. Notably, capital stock exhibits
the largest di�erence, as regions with low estimated CATEs tend to have signi�cantly higher capital
stock per capita (10.9), while regions with high CATEs tend to have lower capital stock per capita
(9.20). This �nding is consistent with the diminishing marginal returns to capital accumulation. For
the employment rate, the less pronounced di�erence between the 1st decile mean (-0.95) and the 10th
(-0.84) suggests that treatment e�ects are stronger in regions with higher labour mobility and market

exibility, allowing quicker adjustment to new economic opportunities, potentially due to greater labour
market dynamism or absorptive capacity. Regarding gross �xed capital formation, the di�erence in
magnitude between the 1st decile mean (7.87) and the 10th (7.59) likely re
ects investment saturation
or ine�ciencies in capital allocation in regions with low treatment e�ects. These results highlight
the importance of designing di�erent, more tailored, policy tools, that address the di�erent economic
pro�les of regions. For instance, capital-saturated regions with considerable capital stock may require
incentives that prioritize innovation and productivity over capital accumulation, whereas for regions
that exhibit lower levels of capital but higher employment elasticity, direct labour market reforms and
training programs could be more e�ective.

Table 10: Comparison of Mean Di�erences Across Conditional Average Treatment E�ects Deciles
1st Decile (N=846) 10th Decile (N=846) Overall p-value (two-sample t-test)

Employment Rate -0.95 (0.13) -0.84 (0.11) <0.001
Capital Stock 10.9 (0.35) 9.20 (0.49) <0.001
GFCF 7.87 (1.29) 7.59 (0.51) <0.001

Motivated to deepen the analysis on the observed heterogeneity I will examine the continuous
marginal relationship between the covariates and CATE using Partial Dependence Plots (PDPs),
shown in Figure 19. In contrast to the simpler, decile-based comparisons, PDPs allow for a continuous
and granular assessment of how treatment e�ects evolve across the entire distribution of each predictor.
By holding other covariates constant PDPs isolate the marginal e�ect of each predictor on CATE. As
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anticipated, these PDPs visually con�rm nonlinear patterns in treatment e�ect heterogeneity, within
a 95% con�dence interval. For employment rate the �rst plot illustrates the non-monotonic relation-
ship that Table 10 above cannot capture, mainly because the latter compares only the most extreme
groups. In this PDP the treatment e�ects remain low for regions with higher unemployment. Notably,
beyond a certain threshold, CATE increases and remains stable at lower unemployment levels, likely
re
ecting that regions with higher labour market participation are prone to more responsive behaviour
to interventions. Consistent with previous �ndings, for capital stock, lower values are associated with
higher CATEs, while at stock levels around 10-11, CATE declines sharply as the stock increases and
its additional contribution to productivity and treatment e�ects reduces. Eventually CATEs are stabi-
lized in lower levels, for regions with higher levels of capital stock. Finally, complementing the table’s
results for gross �xed capital formation that associated higher investment with lower CATEs, as addi-
tional investment yields smaller incremental bene�ts, PDP reveals their complex relationship. For low
investment levels the treatment e�ects are low, but after a certain threshold a positive slope indicates
that an increase in investment levels increases the CATEs. However, after this steep increase, the e�ect

attens at higher levels validating the notion that past investment patterns shape the e�ectiveness of
future interventions.

Hence, in presence of non-monotonic relationships, both continuous and discrete approaches are
necessary to assess treatment heterogeneity. PDPs provide a continuous, smoothed estimate of the
relationship between covariates and CATEs while decile-based comparisons still serve as an important
complementary tool for validating general trends and providing a cleared view on treatment e�ect
variation across distinct segments. For completeness, Figures 28, 29 and 30 in the Appendix depict the
mean CATE within deciles of the covariates for dual purpose; not only to provide a clear perspective on
which variables vary strongly with treatment e�ects, but also to con�rm the general patterns observed
in the PDPs but with greater variability due to discretization.
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Figure 19: Partial Dependence Plots Across Covariates

While marginal PDPs are extremely useful for isolating the individual e�ect of each covariate on
CATE, they may fail to observe key interaction e�ects between covariates. In cases when economic
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variables are correlated, the independent e�ect assumptions of marginal PDPs may not hold. While
there is a low-to-moderate positive correlation for the pairs of employment rate & capital stock (0.321)
and employment rate & gross �xed capital formation (0.309), there is a moderate-to-high positive
correlation between capital stock and gross �xed capital formation (0.624) (see Figure 31, Appendix).
Therefore, building on the insights from the marginal PDPs, I examine how these covariates interact
to jointly shape CATEs. In Figures 20, 21 and 22 I display the two-dimensional PDPs for a visual
investigation of how combinations of multiple economic pro�les in
uence the predicted treatment
e�ects.

Figure 20 reveals a clear non-linear pattern between employment rate and capital stock. For regions
with lower capital stock levels, as the employment rate increases there is a signi�cant positive e�ect
on CATE (0.40-0.50). In contrast, for regions with high capital stock levels, the predicted CATE
remains at low levels (0.20-0.35), regardless of the employment rate, indicating that interventions that
are likely aimed at capital accumulation are no longer e�ective. This pattern indicates that early-
stage interventions, targeting regions with low capital stock and employment growth, yield stronger
positive treatment e�ects. These regions are more responsive to the subsidies compared to regions
with low capital stock and low employment rate. Unlike those regions, regions with high capital stock
and low employment rate are the least responsive to treatment, while regions with high capital stock
show a modest improvement in responsiveness as employment rates increase. The horizontal blue
band observed in this plot, particularly among regions with high capital stock and high employment
rates, re
ects a clear pattern of limited treatment responsiveness (0.20), suggesting that certain regions
within this group exhibit weaker responses to the intervention, compared to the rest regions of the
group (0.30).
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Figure 20: Conditional Average Treatment E�ects Heatmap { Employment Rate vs. Capital Stock

The non-linear interaction of employment rate and gross �xed capital formation is illustrated in
Figure 21, where the low gross �xed capital formation levels are associated with low CATEs (0.20-
0.25) regardless of employment rate, suggesting limited responsiveness of interventions at early stages
of investment. Interestingly, there is a horizontal yellow line that appears just below the threshold
between low and high GFCF levels stands out as an anomaly compared to the rest of the heatmap.
Conceptually, this unexpected pattern could indicate a \transition zone" where regions that are on
the cusp of moving from low to high GFCF levels experience disproportionately strong e�ects from
subsidies. Additionally this pattern may be attributed to a nonlinear interaction between employment
and GFCF. This could suggest that when GFCF is near a crtical threshold, increasing employment
unlocks productivity levels that are not achievable in regions further below the threshold with severe
capital shortages. Notably, higher gross �xed capital formation levels combined with high employment
rates correspond to increased CATEs (0.30-0.36), indicating that subsidies are more constructive in
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dynamic labour markets where resources are more e�ectively allocated. Therefore, to maximize their
impact, subsidies should be prioritized in regions with high GFCF, particularly those exhibiting high
employment rates. In cases where subsidies are directed toward regions with low GFCF, targeting
those with relatively higher employment rates within this group is likely to yield more substantial
treatment e�ects (0.23 > 0.17).
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Figure 21: Conditional Average Treatment E�ects Heatmap { Employment Rate vs. Gross Fixed
Capital Formation

Next, Figure 22, highlights the combined e�ect of capital stock and gross �xed capital forma-
tion on CATE. When both capital stock and investment levels are low, the relatively high predicted
CATEs (0.40), indicate that early-stage interventions are highly bene�cial for regions with limited
initial resources. As expected, when capital stock increases, CATE values severely decline below 0.20.
Interestingly, regions with both high capital stock and high gross �xed capital formation levels show
extremely high responsiveness to treatment (0.40-0.49) compared to those with high capital stock &
low investment (> 0.20) and low capital stock & high investment (0.20-0.30). These �ndings suggest
that the interventions should be targeted in low capital stock regions, combined with high investment
levels, as they have more noticeable e�ects. Conversely, in regions characterized by high capital stock,
subsidies should be directed toward those with elevated investment levels, as they are more likely to
yield substantial bene�ts compared to regions with lower investment levels. The presence of a hori-
zontal yellow band in this plot, mirroring the pattern observed in the previous �gure, suggests that
regions with low GFCF but nearing the threshold for higher investment levels exhibit notably posi-
tive treatment e�ects (0.40). This �nding indicates that certain regions with high capital stock and
relatively low GFCF still respond positively to the treatment, challenging the assumption that high
capital stock universally corresponds to low responsiveness. If policymakers were to assume that all
high-capital-stock regions exhibit limited treatment e�ects, they would risk overlooking these respon-
sive areas, thereby misallocating resources. Additionally, the presence of a darker blue band among
regions characterized by both high GFCF and high capital stock signals that these regions exhibit
notably lower responsiveness to the intervention (0.20). While the broader category of high-GFCF &
high-capital-stock regions generally demonstrates low responsiveness, the speci�c subset within this
darker band appears to experience even weaker treatment e�ects, falling below the 0.20 threshold.
This suggests that within this category, there exists further heterogeneity in policy responsiveness,
reinforcing the need for a more granular approach to policy targeting.
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Figure 22: Conditional Average Treatment E�ects Heatmap { Capital Stock vs. Gross Fixed Capital
Formation

After establishing that the treatment e�ect varies across economic conditions, a natural question
emerges; \Which are those regions that require targeted policy interventions?". As a matter of course,
in Figure 23 my focus shifts from examining how the e�ect varies across regions to contextualizing this
heterogeneity geographically on a spatial map.

In my analysis, the maps present CATE estimates for both treated and control regions, o�ering
a complete geographical perspective on potential treatment responses. However, for control regions,
CATEs represent counterfactual estimates|hypothetical values indicating how these regions would
have responded if treated. This extrapolation of treatment e�ects to regions outside the treated sample
is a signi�cant strength of causal forests, as they leverage complex patterns in covariate relationships.
Since this analysis does not impose strict overlap conditions the maps serve as a valuable exploratory
tool to highlight broader trends. While this 
exibility aligns well with real-world scenarios where
perfect overlap is indeed rare, caution is warranted for regions with high covariate divergence, as these
estimates may be less reliable. However, this re
ects the reality of policy evaluation, where overlapping
covariate pro�les between treated and control units are often imperfect, making the capacity to explore
heterogeneity in counterfactual responses particularly valuable.

With that premise established, I begin my geographical analysis with Figure’s 23 spatial map
that clusters the 228 European regions into three previously discussed groups based on their estimated
CATEs: low responders, neutral responders, and high responders. The clustering pattern indicates that
high responders are predominantly concentrated in Eastern Europe, while low responders dominate
Western and Southern Europe. I cannot assume that all European regions are a tabula rasa, equally
capable of absorbing a given treatment and producing identical outcomes. Each region is inherently
di�erent due to its distinct historical, political and economic context. As Giannetti (2002) argued,
historical disparities between European regions are deeply rooted in these di�erences. For Western and
Northern regions, the early industrialization, stronger institutions and stable political environments
contributed to their current economic success. In contrast, Southern regions are often characterized
by their lower productivity and less diversi�ed economies. Central and Eastern regions are historically
shaped by the political and economic isolation during the communist era, burdened to continue the
legacy of underinvestment and weaker institutions, even after the transition to a market economy.
These disparities a�ect regions’ capacity to \accept" and respond to the treatment.

As evident from the map, regions in Southern Europe (parts of Italy, Spain and Greece), are
considered low responders to treatment due to structural challenges like lower productivity and less
diversi�ed economies or lagging innovation ecosystems and bureaucratic hurdles, typical barriers in
Southern European countries. The parts of Western Europe (e.g., most regions in France and western
Germany) that exhibit low responsiveness likely re
ect regions with saturated capital or diminished
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marginal returns from additional capital investments, highlighting that interventions should be targeted
at innovative, high-value-added sectors such as green energy, digital transformation or research and
development (R&D) ecosystems. Having started from a lower baseline and striving to converge to the
already developed regions, Eastern regions in countries like Poland, Slovakia and Hungary, create a
cluster of high responders to treatment, re
ecting their lower capital saturation and stronger marginal
impact of capital investments. These regions have been major bene�ciaries of EU cohesion funds
that target infrastructure development and economic modernization. Finally, for the most regions in
Northern Europe (Sweden, Finland, Denmark) and in Central Europe (Austria, Slovenia, most parts
of Germany), due to the well-functioning and robust institutions, capable of e�ectively implementing
interventions, regions’ responses are less dramatic but still distinguishable. Their high levels of capital
accumulation and already working-properly labour markets may limit the potential for additional gains
from new interventions, but targeted interventions in emerging sectors (e.g., green energy) or research
facilities can still deliver remarkable returns.

These �ndings con�rm that heterogeneous treatment e�ects are regionally structured and vary
signi�cantly in magnitude.

Cluster Groups

Low Responders

Neutral Responders

High Responders

Clusters of Responders Across European Regions

Figure 23: Map of policy response clusters based on mean Conditional Average Treatment E�ects

Moving beyond clusters, the map in Figure 24 reveals the actual magnitude of treatment e�ects
across all years per European region. It presents a continuous gradient of mean CATEs, ranging from
approximately 0.1 to 0.5. This substantial variation of CATEs suggests that some regions, mainly
concentrated in Eastern Europe, experience more than double the magnitude of impact (CATEs >
0.4), as they are in their catch-up phase, compared to Western and Southern ones. As a matter of fact
Southern regions display consistently low CATEs (< 0.3) raising concerns about persistent divergence
patterns. These high CATEs in Eastern regions suggest that EU cohesion policy has been successful
in fostering regional convergence, especially in infrastructure and industrial development.

However, this raises an intriguing counterfactual question; \What would the treatment e�ect map
look like if wealthier regions|those with higher initial capital and development levels| had been
targeted for intervention?". In line with economic theory, wealthier regions in Western and Northern
Europe would likely exhibit generally lower mean CATEs due to diminishing marginal returns. Addi-
tionally, at a more granular level, even among those high-income regions, treatment e�ects would not
be uniform. Urban centres and innovation hubs’ areas, such as Lombardy in Northern Italy or Paris
in France, might still exhibit moderate treatment e�ects but rural and peripheral areas like Calabria,
Basilicata, and parts of Sicily in Southern Italy or Aquitaine in Western France, would fail to show
adequate responsiveness. Notably, regions with economies heavily reliant on tourism and seasonal
industries like Andalusia in Spain (CATE < 0.3), Algarve in Portugal (CATE < 0.3), Calabria in Italy
(CATE < 0.3), Crete, Ionian Islands and South Aegean in Greece (CATEs: 0.3{0.35) exhibit mixed
CATEs. This occurs as a result of capital investments actually improving physical infrastructure, but,
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without economic diversi�cation, their long-term economic impact becomes limited.

Figure 24: Map of mean Conditional Average Treatment E�ects by region

At this stage, having established beyond doubt a clear causal link and identi�ed signi�cant het-
erogeneity in treatment e�ects, my analysis is ready to answer the core research question; \What is
the e�ect of EU funding on the regions’ Gross Value Added?". However, just as importantly, it dives
deeper into the exploration of the accompanying question; \How does the e�ect of EU funding di�er
across regions?".

As a consequence, Figure 25 illustrates the intersection of CATEs and GVA values across European
regions, for a dynamic view of how policy e�ectiveness is causally connected to regional GVA. The
dark-green regions (high CATEs & high GVA) epitomize \success stories". For these regions, parts of
Germany, Austria, Luxemburg and Southern Sweden, the targeted investments e�ectively translate into
major economic gains, likely reinforcing regional con�dence and forward-looking expectations. In these
regions, with high-governance settings, policy interventions have signi�cant positive impacts on GVA.
In contrast, the light-green (low CATEs & low GVA) regions appear more structurally challenged as
interventions have shown limited e�ectiveness, highlighting a persistent trend of economic stagnation.
Economic growth cannot be driven by money alone, in the absence of good governance. For regions
in parts of Southern Italy and Spain or Greece, the results could stem from mistrust in institutions,
due to corruption or political clientelism, and short-term thinking shaped by decades of persistent
economic underperformance that fostered a climate of reduced willingness to take risks or invest in
new opportunities (Mart��n-Fern�andez et al., 2021). The golden regions in Central and Eastern Europe
(Poland, Hungary, the Baltics or Slovakia) with high CATEs & low GVA exhibit an unexpressed
potential, shaped by their high responsiveness which indicates that they are on the verge of growth
but face short-term challenges, such as potential mismatch between labour market readiness and funded
projects. The fewer blue regions (low CATEs & high GVA) in Western Germany, Italy and Sweden
and the light-blue regions (low CATEs & moderate GVA) are portraying self-su�cient regions, where
their endogenous growth mechanisms navigate their economic performance, independent of external
interventions. Interestingly, the previously identi�ed low-responder regions, exhibit distinct growth
patterns. Most Greek regions, Southern Spain, Northern Portugal and a region in Southern Italy
appear to have low GVA levels indicating their limited capacity for growth, but for most French,
Southern Italian and Northern Spanish regions the underlying factor behind their low responsiveness
is their moderate GVA values, and therefore reduced necessity for reliance on external interventions.
Moreover, the spatial pattern of CATEs re
ects spillover e�ects between neighbouring regions. For
instance, regions in Italy, Sweden and Germany that are closely tied to high-growth neighbours also
see some uplift, while those near to heavily funded regions in Eastern Europe could be losing talent or
investment.

Geography has the ability to amplify or dampen a region’s response to the policy. Regions in
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the economic \core" of Europe (central locations with good market access) can better exploit new
investments, whereas peripheral and rural regions (remote, mountainous or far from major markets),
even with the same investment, might see a smaller GVA bump due to smaller labour pools, out-
migration, or weak access to supply chains.

Figure 25: Intersection of Conditional Average Treatment E�ects and Economic Growth

5.5 Empirical Benchmarking: GSC vs. Causal Forests

Although GSC is more interpretable for panel data and pre-/post-treatment comparisons and Causal
Forests provide plentiful insights into treatment e�ect heterogeneity, by observing the single and dy-
namic ATT estimates for both methods, I aim to evaluate their consistency. While plotting ATT for
Causal Forests is not yet as standard as it is for GSC, it is increasingly being adopted as a practice
in empirical research. The model estimates the CATE (�̂(Xi)) for each unit in the dataset. In order
to compute the ATT as the average of the CATE values for all treated units, the process focuses only
on treated units. By plotting GSC’s and Causal Forest’s dynamic ATT in Figure 26, I aim to observe
the average treatment e�ect per time period. For GSC, dynamic ATT is computed directly as the
average unit-level e�ects for each time period after the treatment, whereas for Causal Forests, the
ATT values can be approximated by grouping treated units by rel year and averaging their CATEs
for each rel year, leveraging the heterogeneity captured by covariate-based predictions. Finally, when
the comparison focuses on unit-speci�c treatment e�ects, each method has a di�erent approach for
the estimation. GSC constructs counterfactual outcomes for each unit in the post-treatment period
by assuming parallel trends and leveraging control units’ pre-treatment trends, in order to estimate
unit-speci�c treatment e�ects over time, while Causal Forests use covariates to predict the unit-level
�̂(Xi) that captures heterogeneity across units.

Di�erences in ATT trends between GSC (rooted in a parametric approach) and Causal Forests
(a non-parametric ML method) are not only feasible but rather expected due to the fundamental
di�erent approaches of the methods. Despite the methods providing complementary insights, they
are not directly comparable. However, in view of comparing them, in Figure 26, GSC’s dynamic ATT
provides estimates of the dynamic treatment e�ect over time, o�ering clarity on time-varying treatment
e�ects, whereas Causal Forest’s manually-constructed from estimated CATEs dynamic ATT, captures
the covariate-driven heterogeneity over time. For the GSC model, the more conservative average ATT
of 0.0908, indicates a small average positive treatment e�ect over time periods. The increasing positive
dynamic ATT trend suggests a delayed or cumulative treatment e�ect for treated regions over time.
Moreover, as time progresses the widening post-treatment con�dence intervals suggest that there is
increasing uncertainty in the treatment e�ect estimates. However due to GSC’s simplicity, these results
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may oversimplify the treatment e�ects by ignoring covariate-driven heterogeneity or dynamic patterns.
The Causal Forest ATT plot presents a unique perspective, with a strong positive average ATT (0.3471)
suggesting a positive treatment e�ect on average for the treated regions. As Causal Forests emphasize
heterogeneity across covariates the dynamic positive results re
ect stronger and more stable initial
treatment e�ects over time compared to GSC results, despite the decline in later periods. This positive
dynamic trend serves as an indication that subgroups with speci�c covariate pro�les, are driving higher
treatment e�ects as they experience disproportionately greater post-treatment bene�ts compared to
others. The consistent narrow con�dence intervals across time, suggest high precision in the ATT
estimates. Although such behaviour is typical across ML models as it re
ects the natural tendency of
forests to capture �ne-grained patterns in the data.

Figure 26: Dynamic and single Average Treatment e�ect on the Treated values for GSC and Causal
Forests over time

This comparison is not intended to determine which method is superior but rather to clarify the
speci�c contexts and research objectives for which each method is best suited and to underscore the
demand for synergistic insights of both methods. After establishing this, GSC appears to be better
suited for reliably estimating the overall treatment e�ect while Causal Forests are leveraged to explain
heterogeneity and dynamic patterns, allowing policymakers to combine these approaches to identify
overall program success and adapt regional strategies based on subgroup-speci�c outcomes. In this
case, GSC empirically validates the initial assumption that global e�ect of subsidies are on average
positive, with the estimation of a signi�cant average treatment e�ect across all treated regions (0.0908).
Causal Forests extend this analysis by revealing how the magnitude of this positive e�ect varies across
di�erent EU regions, with regions in the top deciles experiencing signi�cantly higher treatment e�ects,
while others in the bottom bene�t only marginally. This provides a solid foundation for more targeted
policy interventions that address the speci�c needs of each region.

6 Conclusion

Within this research I aimed to bridge the gap between traditional econometric models and modern
machine learning methodologies by depicting their complementary strengths and their relevance for
policy evaluation. This study contributes to a growing body of literature that seeks to re�ne the
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ways for estimating heterogeneous treatment e�ects, especially in EU regional subsidies’ context, by
methodically evaluating Generalized Synthetic Controls (GSC) and Causal Forests.

As George E. P. Box famously argued \All models are wrong, but some are useful". A key takeaway
is that no single model can adequately capture the complexity of real-world policy impacts. Traditional
models, such as Di�erence-in-Di�erences (DiD) and Two-Way Fixed E�ects (TWFE) are useful but
limited, especially in staggered adoption settings or settings with time-varying treatment e�ects. These
limitations can distort policy conclusion, leading to biased results and suboptimal decisions. Although,
some of these shortcomings are addressed with GSC due to its 
exibility in handling multiple treated
units and time-varying treatment e�ects, it introduces challenges related to factor estimation and
computational demands. Meanwhile, by embracing machine learning’s strengths, Causal Forests o�er
a robust alternative for precision policy-making as they focus on treatment e�ect heterogeneity.

The �ndings of EU regional subsidies’ empirical application con�rm the existence of heterogeneity
in treatment e�ects across regions. Understanding regions’ di�erences is critical and they highlight
the need for a more context-sensitive policy design that tailors interventions to the speci�c character-
istics of each region. Additionally, this application reveals that Causal Forests outperform traditional
methods in identifying these heterogeneous e�ects, making them irreplaceable for economists that aim
to go beyond global average treatment e�ects into subgroup-speci�c treatment e�ects. In cases that
treatment assignment is not random or when regions do not follow parallel trends, GSC o�ers a 
exible
approach than DiD and TWFE, but its success heavily relies on cautious selection of latent factors
and adequate data availability.

Throughout this research journey, while focusing on my primary research question, I also sought to
address additional critical questions regarding the inherent di�erences and complexities of European
regions. Going forward, this research underscores the importance of methodological pluralism in causal
inference. It highlights that policymakers should move away from one-size-�ts-all approaches not just
to improve policy evaluation but to allocate resources more e�ectively and better address the diverse
needs of di�erent regions. Moving forward, further research should explore how the integration of
ML techniques in causal inference is becoming a promising direction for future research, while the
ongoing collaboration between economists and data scientists will be crucial to developing robust,
scalable models that are both theoretically and practically relevant for actually promoting growth and
reducing inequalities across Europe. The future of policy evaluation does not lie in a choice between
tradition and innovation, but rather in harnessing their combined strengths to shape policies that are
not only e�ective but truly inclusive.
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Table 11: List of Country Codes and Country Names
Country

Code Country Name

AT Austria
BE Belgium
BG Bulgaria
CY Cyprus
CZ Czech Republic
DE Germany
DK Denmark
EE Estonia
EL Greece
ES Spain
FI Finland
FR France
HR Croatia
HU Hungary
IT Italy
LT Lithuania
LU Luxembourg
LV Latvia
MT Malta
NL Netherlands
PL Poland
PT Portugal
RO Romania
SE Sweden
SI Slovenia
SK Slovakia

Figure 27: Conditional Average Treatment E�ects estimates in low-propensity and high-propensity
score regions
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Figure 28: Conditional Average Treatment E�ects Heterogeneity by Employment Rate Deciles

Figure 29: Conditional Average Treatment E�ects Heterogeneity by Capital Stock Deciles
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Figure 30: Conditional Average Treatment E�ects Heterogeneity by Gross Fixed Capital Formation
Deciles

Figure 31: Correlation and Distribution of Covariates
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