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 This thesis comprises a research of optimal sampling designs. Firstly, I 

insert the theory of the standard sampling methods under finite population and 

I find the estimators of quantities of the population of these methods. Then, I 

insert the idea of the superpopulation approach.  Optimal sampling methods 

under autocorrelated finite populations are presented in chapter 4. I analyse 

there, four optimal sampling designs. I present finally a short comparison of 

these optimal sampling schemes. 
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Γεώργιος Σαρρής 

 

Μελέτη βέλτιστων µεθόδων δειγµατοληψίας 

 

Ιούνιος 2009 

 

Η διατριβή αποτελεί µία έρευνα βέλτιστων δειγµατοληπτικών σχέδιων. 

Αρχικά εισάγω τη θεωρία των τυποποιηµένων δειγµατοληπτικών µεθόδων σε 

πεπερασµένο πληθυσµό και βρίσκω εκτιµητές ποσοτήτων του πληθυσµού από 

αυτές τις µεθόδους. Εν συνεχεία, εισάγω την ιδέα της προσέγγισης του 

υπερπληθυσµού. Βέλτιστοι δειγµατοληπτικοί µέθοδοι σε αυτοσυσχετισµένους 

πεπερασµένους πληθυσµούς παρουσιάζονται στο κεφάλαιο 4. Εγώ αναλύω 

εκεί 4 βέλτιστα δειγµατοληπτικά σχέδια. Στο τέλος παρουσιάζω µία σύγκριση  

αυτών των βέλτιστων δειγµατοληπτικών σχεδίων. 
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1 

 
1. CHAPTER 

INTRODUCTION 

 In everyday life, we “meet” in media researches which are referred on a great 

spectrum of sciences like sociology, psychology, medicine, economics etc. However, 

the method of the completely census to implement a research (collection of all the 

information of the study) seems impracticable (cost, time).For this reason, the 

researchers apply sampling methods (part of population). 

  In chapter 2, we insert the theory of the standard sampling methods under finite 

population. We find the estimators of each sampling method of quantities of the 

population like the population total, the population mean, the ratio and the proportion. 

We also produce the estimators’ variance, a criterion for judging the produced 

estimator and the method of sampling. Finally, we refer to advantages and 

disadvantages of each sampling method. 

 In chapter 3, we insert the idea of the superpopulation approach, where the 

population vector ( 1y , 2y ,…, Ny ) is assumed to be a realization of a random unknown 

vector ( ,1Y ,2Y …, )NY  with a common distribution ξ .This approach has many 

advantages in relation with the approach of fixed population because we can make 

assumptions about this distribution. So, we can make use of a structure (it is rule and 

not an exception) like linear trend or autocorrelation among the units. We also refer 

the superpopulation inference for a model without clusters. 

 Sampling methods under autocorrelated finite populations are presented in 

chapter 4. We give optimal sampling schemes which provide us with the best 

estimators. Firstly, we refer to Blight’s model (1973). Here, the optimal sampling 

scheme is the centrally located systematic design. A generalization of the previous 

optimal sampling design is the model by I.Papageorgiou and K.X.Karakostas (1998). 

They consider with an autocorrelated finite population with an integer convex 

autocorrelation function ρ ( )⋅ . Blight’s results hold and for this more general case. 

R.Mukerjee and S.Segupta (1989) prove that the optimal design is equivalent with a 

minimization problem for which they give a useful algorith. Finally, Chang-Tai Chao 

proposes two optimal designs which are based on the eigensystem of the population 

covariance matrix. 
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2 

 We finish our work in chapter 5 with a comparison of optimal designs which are 

presented in previous chapter. We suppose an autocorrelated finite population with an 

integer convex autocorrelation function. We compare the design of I.Papageorgiou 

and K.X.Karakostas (section 4.2) with the Design 1 of Chang-Tai-Chao (section 4.4). 

The comparison study is based on the efficiency of these sampling designs. The 

analytic numerical results are given from computational work with programming. 
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2. CHAPTER  

FINITE POPULATION SAMPLING 

Introduction 

In this chapter, we develop the theory of the standard sampling methods. We 

will explore and present basic concepts for sampling from finite populations. We will 

refer the causes for which the sampling surveys are very important in practical every 

day problems and the scope of researcher. We will mention the estimators of 

quantities of the population like the population total, the population mean, the ratio 

and the proportion for every sampling method. We introduce the estimator’s variance, 

a quantity associated with the estimator but also with the method of sampling and thus 

it can be used as a criterion for judging the produced estimator and the method of 

sampling. Finally, we make a reference about the advantages and the disadvantages of 

the sampling methods, something which comprises a comparison of these.  

2.1.  The idea of finite population sampling 

2.1.1. Researches 

In everyday life, we “meet” in newspapers, television and other media, results 

which are based on researches. These are referred on a great spectrum of applications 

like sociology, psychology, medicine, economics, political science, education, 

demography, husbandry etc. 

Initially, one way to implement a research is to collect all the related with the 

subject of study information from a population. This procedure is the completely 

census. We take into account all the units of the population and then we proceed to 

analysis of this data (ex. to find the mean height of students in a class, we need the 

data with the height of all the students). 

Nevertheless, if we consider that almost all the cases of researches concern 

thousands or millions units, the completely census seems impracticable. The major 

reasons are the cost and the time to collect and analyze the data. Moreover there is a 
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need to repeat the same study occasionally and some times very often. Hence, it is 

necessarily to select a small part of the units with an appropriate way, where the 

collected units express the initial population. The researcher analyzes this part of units 

and generalizes the results for all the population. This part or subset of population is 

named sample, through which we implement the sampling research. Usually, we note 

the size of the sample as “ n ”, while the size of all the units of the population is “ N ” 

(obviously N n≥ ). 

The principals and the methods for the collection and the analysis of the data 

from finite population is known as “Sample Survey Methods” or “Sampling”. The 

analysis of sampling surveys is the most important tool for researches on a great 

spectrum of applications. 

2.1.2. The concept of finite population and sample 

The concept of population describes a group of people, animals, items or 

observations for which we are interested. 

Element is defined every unit of a set, on which occurs a procedure of 

measurement or observation of a property. For example if we want to measure the 

height of footballers of a team, each footballer is an element.  

Population is defined as an essential set of units which will be studied for one or 

more characteristics (set of elements). 

Sampling units are collections of simple units like households, classes etc… 

The sampling unit may not coincide with an element .For example a household may 

have 3 or 4 members (elements). However, if every sampling unit contains one 

element of a population (household with a member), then the sampling unit and the 

element are the same. 

Sampling frame is a list of elements which consists the population of research. 

There is list-frame like catalogue with number of telephones or a simple catalogue 

with names. There is area-frame like blocks of a town. Finally, there is notional-

frame. For example, all the earthquakes which are occurred for a month in Greece. 

Sample is a collection of sampling units from a frame. 
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2.1.3. Sampling researches 

The sample is the approach which is selected for the sampling researches for the 

following basic reasons: 

A. Reduced cost: If data are secured from only a small fraction of the aggregate, 

expenditures are smaller than if a complete census is attempted. 

B. Greater speed: The data can be collected and summarized more quickly with a 

sample than with a complete count. 

C. Greater accuracy: Because personnel of higher quality can be employed and 

given intensive training and because more careful supervision of the field 

work and processing of results becomes feasible when the volume of work is 

reduced, a sample may actually produce more accurate results than the kind of 

complete enumeration that can be taken. 

D. Practical reasons: Sometimes the realization of a survey with complete 

enumeration may be impossible. 

2.1.4. The Scope of Sampling 

The scope of the researcher who realizes a sampling is:   

A. The optimum choice of sample. A sample is optimum, if represents properly 

the population and provides estimator with great accuracy. 

B. The statistical inference. Estimators for parameters of population, for which 

we are interested (population total for a characteristic, population mean for a 

characteristic, ratio of  two characteristics of a population, population 

proportion for a characteristic), their variances, choice of appropriate sampling 

size etc…  

2.1.5. Choice of  the sample 

The choice of the sample size and the selection of the units of the population 

which will be included in the sample are very important procedures in order to have 

representative sample of this population. By increasing the sample size, surely we 

have better accuracy to the estimators of the characteristics of the population. 

However, large sample size involves increase of the cost of the sampling and more 

intensive work. Small sampling size may lead to biased estimators. Though, we must 
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notate that a careful choice of a small sample can give better results than a large one 

whose the units are not selected appropriate. The choice of the sample is affected from 

the below factors: 

1) population size 

2) variation of the studied population 

3) cost of the survey 

4) method of the choice of the sample 

5) statistical error 

6) confidence coefficient 

 

For the choice of the sampling size, we take into account the margin error (d) of 

the variation of the estimator from the real estimated value and the confidence 

(confidence coefficient) 1 a− . 

If θ  is a parameter of the population and θ̂  is an estimator of it, then the margin 

error is defined as: 

 

Usually 0.05a =  or 0.10 . 

2.1.6. Errors of the Sampling 

The major disadvantage of a sampling survey is that the estimators of the 

characteristics of the population may contain “errors of sampling”. However we can 

reduce these errors with an appropriate method of the choice of the sample. There are 

sampling errors and non-sampling errors. Sampling errors can be occurred from the 

non-correct choice of the appropriate sampling method and its sample. Aside from the 

sampling error associated with the process of selecting a sample, a survey is subject to 

a wide variety of errors. These errors are commonly referred to as non-sampling 

errors. Non-sampling errors can be defined as errors arising during the course of all 

survey activities other than sampling. Unlike sampling errors, they can be present in 

both sample surveys and censuses.  

adP −≥≤− 1]|ˆ[| θθ
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2.1.7. Methods of the collection of the data 

In a sampling survey, the information is collected with the help of 

questionnaires. The major ways which the researcher applies their survey to take the 

answers of the questionary is: 

• Face to Face 

• Telephone interview 

• Postal interview 

• Self completion 

2.1.8. Estimation of parameters of population 

The objective scope of sampling survey is the estimation of parameters of 

population from the information which is contained in the sample. The major 

parameters of population with great interest are the population total for a 

characteristic, the population mean for a characteristic, the ratio of two characteristics 

of a population, population proportion for a characteristic.  

Let Y the characteristic which we study and N the number of population. 

NYYY ...,,, 21  are the values of Y for the units of the population. 

Population total 

Y=∑
=

N

i

iY
1

 

Example: The total of the incomings of citizens in Athens. 

Population mean  

=Y
N

1 ∑
=

N

i

iY
1

 

Example: The mean of the height of students in a school. 

Population proportion (for a characteristic) 

N

A
P =   
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A: The number of members of population with the characteristic.  

Example: The proportion of students in a school who are smokers. 

Ratio (for two characteristics of a population) 

∑

∑

=

==
N

i

i

N

i

i

X

Y

R

1

1  

Example: The ratio of number of boys who like to play football towards these ones 

who like to play basketball. 

Let θ  is a characteristic of the population. We estimate θ  from the sample, s , 

which we select, by estimator )(ˆ sθ . The major properties which lead to “good” 

estimators are the unbiasedness and the accuracy. 

Unbiased is an estimator θ̂  when θθ =)ˆ(E . A measure of accuracy of an 

estimator is the variance, 2)ˆ())(ˆ( θθθ −= EsVar . The smaller the variance is, more 

accurate the estimator is. If the estimator is not biased the quantity which determines 

the accuracy of the estimator is the MSE (mean square error). 

 )ˆ()ˆ()ˆ()ˆ( 22 θθθθθ biasVarMSE +=−Ε=  

2.2. SIMPLE RANDOM SAMPLING 

2.2.1. Description 

The most simple and essential sampling method is the simple random sampling 

(srs). When the size of the sample is n  and the size of all the units of the population is 

N , the possible samples are 








n

N
, assuming that the selection of units is without 

replacement. Simple random sampling is a method of selecting n units out of N such 
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that every one of the possible samples has an equal chance to be chosen. The chance 

or in other words the possibility for every sample to be chosen is 









n

N

1
.  

2.2.2. Definition and notation 

The values obtained for any specific item in the N  units that comprise the 

population are denoted by NYYY ...,,, 21 . The corresponding values for the units in the 

sample are denoted by 1 2, ,..., ny y y . Note that the sample will not consist of the first n 

units in the population, except in the instance, usually rare, in which these units 

happen to be drawn.  

Capital letters refer to characteristics of the population and lower case letters to 

those of the sample. In this chapter we will make use of the notation given in Table 

2.1. 

Table 2.1. Notation of population and sample quantities 

 population sample 

Mean ∑
=

=
N

i

iY
N

Y
1

1
 ∑

=

=
n

i

iy
N

y
1

1
 

Total ∑
=

=
N

i

iYY
1

 ∑
=

=
n

i

iyy
1

 

Variance ∑
=

−
−

=
N

i

i YY
N

S
1

22 )(
1

1
 ∑

=

−
−

=
n

i

i yy
n

s
1

22 )(
1

1
 

Covariance ∑
=

−−
−

=
N

i

iiXY YYXX
N

S
1

))((
1

1
 ∑

=

−−
−

=
n

i

iiXY yyxx
n

s
1

))((
1

1
 

 

The random variable of iy  is denoted as “ '

iy ”. In simple random sampling we have 

that: 

 ' 1
[ ] , 1, 2,..., , 1, 2,...,i kP y Y i n k N

N
= = = =  (2.1) 

In additional, we denote 
N

n
f = , the sample fraction of the sampling. 
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Corollary 2.1. The correlation between the random variables '

iy  and '

jy , for ji ≠ , is 

given from the following relation:   

 
1

1
),( ''

−
−=

N
yy jiρ  (2.2)   

2.2.3. Estimation of population mean 

The population mean is a very important characteristic of the population. We 

will discuss about the unbiased estimator of the population mean, the variance of the 

estimation and the standard error of it. 

Theorem 2.1. 

 i) The sample mean y  is an unbiased estimate, with simple random sampling, of 

Y .          

 YyE =)(  . (2.3) 

    

 ii) The variance of the mean y  from a simple random sampling is: 

 
N

n
ff

n

S
yV =−= ),1()(

2

 (sample fraction). (2.4) 

Proof:    

 i) The random variables '

iy  take the values NYYY ...,,, 21  with the below 

probability: 

 Nkni
N

YyP ki ,...,2,1,,...,2,1,
1

][ ' ====  

so 

 ∑ ∑ ∑
= = =

====
n

i

n

i

N

k

ki YYn
n

Y
Nn

yE
n

yE
1 1 1

' 111
)(

1
)(  

because we have 
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 ∑ ∑
= =

====
N

k

N

k

kkiki YY
N

YyPYyE
1 1

'' 1
][)( . 

 ii) We know from Corollary 2.1 that 
1

1
),( ''

−
−=

N
yy jiρ .  

Defining also 

 ∑
=

−
Ν

=
N

i

i YY
1

22 )(
1

σ  

, we calculate the variance 

{ }

' ' ' '

2
1 1

2
2 2

2

1 1
( ) ( ) ( ) ( , )

1 1
( 1) ) (1 )

1

n n

i i i j

i i i j

V y V y V y Cov y y
n n

n
n n n

n n N

σ
σ ρσ

= = ≠

 
= = + = 

 

−
= + − = −

−

∑ ∑ ∑
 

and we have 

 )
1

()(
2

−
−

=
N

nN

n
yV

σ
. 

 

We know that  

 2σ =
N

N 1− 2S . 

So if we replace the previous relation in the relation of )(yV , we finally have 

 )(yV =
n

S 2

)1( f− . 

The “ f ” is the sample fraction and the “ f−1 ” is called as finite population 

correction. 

If the size of the population N  is large, the sample fraction is very small and it 

can be omitted. 

Though the previous relation becomes 

 =)(yV
n

S 2

 (2.5) 
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Corollary 2.2. The standard error of  y  is 

 )(yσ =
n

S
f−1 . (2.6) 

Theorem 2.2. For a simple random sample 2s  is an unbiased estimate of 2S . 

 =)( 2sE 2S . (2.7) 

Proof:  

We know the relations below 

 i) 22)( σ=−YyE i ,  

 ii) ==−Ε )()( 2 yVYy )1(
2

f
n

S
− , 

 iii) =+++==−− ]
1

)...(,[),())(( 21
n

yyyyCovyyCovYyYyE niii   

=−+=+∑∑
≠ ≠

})1({
1

}),()({
1 22 ρσσ n

n
yyCovyV

n ji ji

jii  

2
2

)1(

1
σ

σ
−
−

−
Nn

n

n
, 

 iv) 22 1
S

N

N −
=σ . 

So we have, 

 =








−
−

= ∑
=

n

i

i yy
n

EsE
1

22 )(
1

1
)(  

=








−+−
− ∑

=

n

i

i yYYyE
n 1

2][
1

1
 

=








−−−−+−
− ∑ ∑

= =

n

i

n

i

ii YyYyyYnYyE
n 1 1

22 ))((2)()(
1

1
 

=








−
−

+−−+
−

2222

1

)1(2
2)1(

1

1
σσσ

N

n
Sfn

n
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=






 −

−
−

+
−

−
−

+
−

−
2222 1

1

)1(2)1(2)1(

1

1
S

N

N

N

n
S

N

N
S

N

nN
S

N

Nn

n
 

2
2

)(
1

S
N

NnN

n

S
=

−
−

 

Corollary 2.3. An unbiased estimate of the variances of y  is 

 )(ˆ yV  ≡  2s ( y ) = )1(
2

f
n

s
−  (2.8) 

where 2s  is an unbiased estimator of 2S . 

Corollary 2.4. The standard error of y  is 

 =)( ys
n

s
f−1  (2.9) 

2.2.4. Estimation of population total 

Another very important characteristic of the population is the population total Y. 

This is estimated by Ŷ yN= , where y  is the unbiased estimator of the population 

mean Y . 

Theorem 2.3. An unbiased estimate of the population total Y is Ŷ yN= . 

 YYE =)ˆ(  (2.10) 

with the following variance 

 )1()ˆ(
22

f
n

SN
YV −=  (2.11) 

 

Proof:  

 Straightforward consequence from the definition of YNY = and theorems 2.1, 

2.2. 
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Corollary 2.5. The standard error of Ŷ  is 

 =)ˆ(Yσ
n

NS
f−1  (2.12) 

When the value of the variance 2S  is unknown and is estimated from the sample 

variance 2s , we have the following corollary. 

Corollary 2.6. An unbiased estimator of the ˆ( )V Y  is 

 =≡ )ˆ()ˆ(̂ 2 YsYV
n

SN 22

)1( f−  (2.13) 

The corresponding standard error is 

 =)ˆ(Ys
n

Ns
f−1  (2.14) 

2.2.5. Estimation of ratio 

Sometimes the ratio of two characteristics of the population is very important 

information. For example, the number ( )x  of the members of a household is the one 

characteristic when the other is the expenditures ( )y  of the household every week. So 

the ratio shows us the expenditure of each member of the household every week. 

=R
X

Y
=

x

y
 

The R  is estimated by R̂  where  

R̂ =
x

y
=

x

y
 

Theorem 2.4. In small samples the distribution of R̂  is skew and R̂  is usually a 

slightly biased estimate of R . If variates iy , ix  are measured on each unit of a simple 

random sample of size n, assumed large, the bias of the estimation becomes 

negligible, so 
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 )ˆ(RE  ≈ R  (2.15) 

with variance 

 )ˆ(RV  ≈
2

1

Xn

f− ∑
= −

−N

i

ii

N

Rxy

1

2

1

)(
 (2.16) 

(Proof is omitted, see Sampling Techniques (2nd edition) of William G. Cochran p.30) 

 

Corollary 2.7. The variance )ˆ(RV  is estimated from  

 )ˆ()ˆ(̂ 2 RsRV ≡ =
2

1

Xn

f−
1

)ˆ(
1

2

−

−∑
=

n

xRy
n

i

ii

 (2.17) 

when X  is unknown, it is estimated by x . 

Corollary 2.8. The standard error of R̂  is estimated by )ˆ(Rs , where for 

computational reasons it is written 

 )ˆ(Rs =
)1(

1

−

−

nnx

f
∑ ∑ ∑
− = =

+−
n

i

n

i

n

i

iiii xRyxRy
1 1 1

222 ˆˆ2  (2.18) 

2.2.6. Estimation of proportion 

In a sampling survey sometimes, it is very interesting to estimate the proportion 

of a population for a specific property. 

Let 

 
1,

0,
i

if i unit has the specify property
y

otherwise

−
= 


 

=≡ YA ∑
=

N

i

iy
1

 = number of units of the population with the specify property 

=≡ ya ∑
=

n

i

iy
1

 = number of units of the sample with the specify property 
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=== P
N

A
Y proportion of the population with the specify property 

=== p
n

a
y proportion of the sample with the specify property 

Theorem 2.5.  

 i) The sample proportion p is an unbiased estimator of P . 

 PpE =)(  (2.19) 

with variance  

 =)( pV )1(
2

f
n

S
− =

n

PQ
(

1−
−

N

nN
) (2.20) 

(Proof is omitted, see Damianou C., (1999) Sampling Methodology: Techniques and 

Applications, 3rd edition , Aithra: Athens, page 67)  

 

Corollary 2.9. An unbiased estimator of )( pV is 

 =)(2 ps )1(
1

f
n

pq
−

−
 (2.21) 

2.3. STRATIFIED RANDOM SAMPLING 

2.3.1. Description 

In stratified sampling the population of N  units is first divided into L  

subpopulations of 1 2, ,..., LN N N  units, respectively. These subpopulations comprise 

the whole population, so that 

1N + 2N ++ ... LN N=  

CC BY: Attribution alone 4.0

https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.26219/heal.aueb.5554



17 

The subpopulations are called strata. The sample sizes within the strata are 

denoted by 1n , 2n ,…, Ln .If a simple random sample is taken in each stratum, the 

whole procedure is described as a stratified random sampling. 

2.3.2. Notation 

The suffix h  denotes the stratum and i  the unit within the stratum. The 

following symbols all refer to stratum h : 

hN , hn : total number of units and number of units in sample correspondingly. 

hiY : value obtained for the thi −  unit. 

hW =
N

N h , hw =
n

nh : stratum weight in the population, stratum weight in the 

sample correspondingly. 

h
h

h

n
f

N
= : sampling fraction in the stratum. 

1

hN

hi

i
h

h

Y

Y
N

==
∑

, 1

hn

hi

i
h

h

y

y
n

==
∑

: true mean, sample mean correspondingly. 

2

2 1

( )

1

hN

hi h

i
h

h

Y Y

S
N

=

−
=

−

∑
, 2

hs =
1

)(
1

2

−

−∑
=

h

n

i

hhi

n

yy
h

: true variance, sample variance 

correspondingly. 

2.3.3. Estimation of population mean 

Theorem 2.6. The Ŷ  ≡  sty = ∑
=

L

h

hh yW
1

 is an unbiased estimator of Y (the stratified 

random sampling is comprised of L strata with stratum weight hW ) 

 (E )sty = Y  (2.22) 

with variance 
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 )( styV = ∑
=

−
L

h

h

h

h
h f

n

S
W

1

2
2 )1(  (2.23) 

(Proof is omitted, see Sampling Techniques (2nd edition) of William G. Cochran p.89, 

91) 

Corollary 2.10. If hW = hw , this case is referred as proportional allocation. We 

substitute  

 hn  = 
N

nN h  

in (2.22).  

The variance reduces to  

 )( propyV = ∑
=

− L

h

hh SW
n

f

1

21
. (2.24) 

Finally, if the variances in all the strata have the same value, 2

wS , we obtain the simple 

result 

 )( propyV = )1(
2

f
n

Sw − . (2.25) 

Corollary 2.11. An unbiased estimator of sty  is 

 )(̂ styV  ≡  )(2

stys = ∑
=

−
L

h

h

h

h
h f

n

s
W

1

2
2 )1( . (2.26) 

In the case of proportional allocation, an unbiased estimator of (V propy ) is 

 )(̂ propyV = ∑
=

− L

h

hh sW
n

f

1

21
 (2.27) 

2.3.4. Estimation of population total 

We know that YNY = , so  
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 stŶ == YN ˆ
styN  

Theorem 2.6. An unbiased estimator of Y  is  

 )ˆ( stYE Y=   (2.28) 

with variance 

 (V )ˆ
stY = ∑

=

−
L

h

h

h

h
h f

n

S
N

1

2
2 )1(  (2.29) 

Proof:  

 Straightforward consequence from the definition of stŶ = YN ˆ = styN  and 

theorem 2.6.  

Corollary 2.12. An unbiased estimator of )ˆ( stYV  is  

  )ˆ(̂ stYV  ≡  )ˆ(2

stYs = ∑
=

−
L

h

h

h

h
h f

n

s
N

1

2
2 )1(  (2.30) 

2.3.5. Estimation of proportion 

We define the below quantities: 

hA : number of units of the population in strata h with the specify property. 

ha : number of units of the sample in strata h with the specify property. 

hP : true proportion of the population in strata h with the specify property. 

hp : sample proportion of the population in strata h with the specify property. 

 We know that  

P̂  ≡  hp =
h

h

n

a
  

and that 
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=A ∑
=

L

h

hA
1

= ∑
=

L

h

hh PN
1

 

which is estimated by 

=stÂ ∑
=

L

h

hh PN
1

ˆ = ∑
=

L

h

hh pN
1

. 

So, P  is estimated by 

P̂ == stp
N

Â
= ∑

=

L

h

hh pW
1

 

Theorem 2.7. An unbiased estimator of P  is stp  

  (E )stp P=  (2.31) 

with variance 

  (V )stp = ∑
= −

−L

h h

hh

h

hh
h

N

nN

n

QP
W

1

2

1

)(
 (2.32) 

Proof:  

 If we substitute the above relation for stp  it is straightforward that   

 (E )stp P= . 

Now for the variance, from the definition of the proportion 

 2

hS = hh

h

h QP
N

N

1−
 

and the variance of hp   

 (V hp ) =
h

hh

h

hh

n

QP

N

nN

1−

−
. 

So from the relation of stp  the (2.31) is straightforward. 

Corollary 2.13. In the case of proportional allocation, where hn  = n hW , 
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 (V stp ) = ∑
=

− L

h

hhh QPW
n

f

1

1
 (2.33) 

Corollary 2.14. An unbiased estimator of )( stpV , when hP  is unknown, is 

 )(̂ stpV ≡  )(2

stps = )1(
11

h

h

hh
L

h

h f
n

qp
W −

−∑
=

 (2.34) 

In the case of proportional allocation, an estimator of )( proppV , is 

 )(ˆ
proppV  ≡  

2s ( )propp  ≈  ∑
=

L

h

hhh qpW
n 1

1
 (2.35) 

2.3.6. Optimum Allocation 

In stratified sampling the values of the sample sizes hn  in the respective strata 

are chosen by the sampler. They may be selected to minimize )( styV  for a specified 

cost of taking the sample or to minimize the cost for a specified value of )( styV . 

The simplest cost function is of the form 

Cost == C 0c + ∑
=

L

h

hhnc
1

 

Theorem 2.8. In stratified random sampling with a cost of the previous form, the 

variance of the estimated mean sty  is minimum when 

 hn =

∑
=

L

h

hhh

hhh

cSW

cSW
n

1

/

/
 (optimum allocation) 

and if hc Lhc ...,,1, == then 

 hn =

∑
=

L

h

hh

hh

SW

SW
n

1

     (Neyman) (2.36) 

(Proof is omitted, see Sampling Techniques (2nd edition) of William G. Cochran p.95-

96 using the calculus method of Langrange multipliers). 
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A formula for the minimum variance is obtained by substituting the value of hn  

(Neyman) into the general formula for )( styV .  

)(min styV = ∑
=

L

h

hh SW
n 1

2)(
1

− ∑
=

L

h

hh SW
N 1

21
 

Theorem 2.9. In stratified random sampling with a specified value of the variance 

== 0)( VyV st ∑
=

−
L

h

h

h

h
h f

n

S
W

1

2
2 )1( , 

the cost is minimum when 

hn =

∑
=

L

h

hhh

hhh

cSW

cSW
n

1

/

/
. 

If hc Lhc ...,,1, ==  then 

hn =

∑
=

L

h

hh

hh

SW

SW
n

1

. 

(Proof is omitted, see Damianou C., (1999) Sampling Methodology: Techniques and 

Applications, rd3  edition, Aithra: Athens, page 143-144)  

 

2.3.7. Comparison of simple random, proportional and optimum 

allocation of n  

Theorem 2.10. If terms in =hf
h

h

N

n
 are ignored, 

 optV  ≤  propV  ≤  ranV  

Where the optimum allocation is for fixed n , that is, with hn  ∝  hh SN . 
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Proof:  

 We know that, 

 ranV =
n

S 2

,   propV =
nN

1 ∑
=

L

h

hh SN
1

2 ,   optV =
2

1

nN
(∑

=

L

h

hh SN
1

) 2 . 

From the definition of 2S , 

 ranV =
n

S 2

=
nN

1 ∑
=

L

h

hh SN
1

2 +
nN

1 ∑
=

−
L

h

hh YYN
1

2)(  

 ranV = propV +
nN

1 ∑
=

−
L

h

hh YYN
1

2)(  

we also have that, 

 propV − optV =
nN

1 ∑
=

−
L

h

hh SSN
1

( ) 2  

so, 

 ranV = optV +
nN

1 ∑
=

−
L

h

hh SSN
1

( ) 2 +
nN

1 ∑
=

−
L

h

hh YYN
1

2)(  

 optV  ≤  propV  ≤  ranV  

In stratified sampling, the variance of the estimator arises from optimum 

allocation of n , reduces in terms of the variance of simple random allocation as much 

as: 

 i) The variation between the means of the strata increases 

 ii) The inhomogeneity in the strata increases 

2.4. Systematic Sampling 

2.4.1. Description 

This method of sampling is at first sight quite different from simple random 

sampling. The basic features of systematic sampling are: 
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a) the sampling interval k  

We distinguish now two occasions: 

i) If N is a multiple of n , let =k
n

N
 

ii) If N is not a multiple of n , let =k 





n

N
 +1 

b) a random start r  from the first k  units 

We must stress that if the value of sampling interval takes the value 





n

N
 +1, 

there will be samples with size smaller than n . To avoid this problem we complete 

these samples with units, by starting from the beginning of the population.  

Suppose that the N units in the population are numbered 1 to N in some order. 

To select a sample of units, we take a unit ( )r  at random from the first k  units and 

every k th−  unit thereafter. So the sample is comprised by the subsequent units in the 

population with numbers 

knrkrr )1(...,,, −++  

For instant, if k  is 15 and if the first unit drawn is number 13, the subsequent 

units are numbers 28, 43, 58 and so on. The selection of the first unit determines the 

whole sample. This type is called an every k th−  systematic sample. 

2.4.2. Notation 

If r  is the random start and k  is the sampling interval, the sample is  

( 1), ,...,r r k r n ky y y+ + − . There are k  different possible systematic samples as many as the 

possible values of r . 

Let .ry , 2

.rS  are the mean and the variance of the r -sample (sample with 

random start r ) 

.ry = ∑
=

−+

n

j

kjry
n 1

)1(

1
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2

.rS = 2

1

.)1( )(
1

1
∑
=

−+ −
−

n

j

rkjr yy
n

 

Let 2
wsyS  is the variance among units that lie within the same systematic sample 

2
wsyS = ∑∑

= =

−
−

k

r

n

j

rrj yy
nk 1 1

2

. )(
)1(

1
= ∑

=

k

r

rS
k 1

2

.

1
 

2.4.3. Estimation of population mean 

Let syy = ∑
=

−+

n

j

kjry
n 1

)1(

1
 be the mean of a random systematic sample. The syy  is 

an estimator of population total. Here, we must distinguish two occasions to examine 

the property of unbiasedness. 

• If N  is a multiple of n , the syy  is an unbiased estimator of Y . 

• If N  is not a multiple of n , we follow the next two ways to provide 

unbiasedness to the estimator. 

a) We adjust the probabilities of selection for each of the systematic 

samples, according to the number of units that contain. 

b) We complete the samples with smaller size, by starting from the 

beginning of the population. 

For example, if 10N =  and 3n = , then =k 





n

N
 +1 because N  is not a 

multiple of n , so 4k = . Thus, with 10N =  and 4k =  the numbers of the units in the 

four systematic samples are shown in the following Table 2.2 
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Table 2.2. Systematic samples (1st way) 

I II III IV 

1 2 3 4 

5 6 7 8 

9 10   

 

With the first way, if a probability of selection 
10

3
 is given to each of the first two 

samples and a probability 
10

2
 to each of the last two, the sample mean is unbiased. 

With the second way, we complete the last two samples, with units, by starting 

from the beginning of the population. So, the numbers of the units in the four 

systematic samples are shown in the Table 2.3. 

Table 2.3. Systematic samples (2nd way) 

I II III IV 

1 2 3 4 

5 6 7 8 

9 10 1 2 

Theorem 2.11. The Ŷ  ≡  syy = ∑
=

−+

n

j

kjry
n 1

)1(

1
 is an unbiased estimator of the 

population mean 

 )( syyE = Y  (2.37) 

with variance 

 )( syyV = 22 )1(1
wsyS

N

nk
S

N

N −
−

−
 (2.38) 
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(Proof is omitted, see Damianou C., (1999) Sampling Methodology: Techniques and 

Applications, rd3  edition , Aithra: Athens, page.192). 

To compare the sampling schemes discussed in this chapter, we distinguish 

three types of population structure and compare the sampling schemes with respect to 

the variances of the estimators they provide. 

 a) For random population, where the units in the population are in “random” 

order, without specific trend or structure, we have 

   ()( VyV sy = )rany  

 b) For ordered population, where the units are ordered with respect to a 

characteristic, we have 

  )( syyV  ≤  )( ranyV  

 c) For periodic population, where the units have a circle rotation, we have 

  )( syyV  ≥  )( ranyV  

Corollary 2.15. If the systematic sampling is equivalent to the simple random 

sampling (random list without periodicity or order) an estimation of ( )syV y ) is 

 )(̂ syyV  ≡  2s ( syy ) = 
n

s 2

( f−1 ) (2.39) 

 

2.4.4. Estimation of population total Y , ratio R , proportion P  

Supposing we have random population and we apply Theorem 2.3, 2.4, 2.5 

correspondingly for the estimator syy . 
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2.5. Cluster Sampling 

2.5.1. Description 

Several references have been made in books (Damianou C., (1999) Sampling 

Methodology: Techniques and Applications, rd3  edition , Aithra: Athens, Sampling 

Methods of William G. Cochran etc.) to surveys in which the sampling unit consists 

of a group or cluster of smaller units that we have called elements. There are two main 

reasons for the widespread application of cluster sampling. Although the first 

intension may be to use the elements as sampling units, it is found in many surveys 

that no reliable list of elements in the population is available and that it would be 

prohibitively expensive to construct such a list. For example a region from maps can 

be divided into area units such as blocks in the cities. These clusters are often chosen 

to solve the problem of constructing a list of sampling units. 

The population in cluster sampling is divided into groups-clusters and this 

seems to be similar with the method of stratified sampling. However, there are 

significant differences. In stratified sampling the elements within strata should be as 

homogeneous as possible and the strata in a whole should be as heterogeneous as 

possible. In cluster sampling the elements within clusters should be as heterogeneous 

as possible and the clusters in a whole should be as homogeneous as possible. 

Moreover, the mechanism of selecting units differs in these two cases. Details are 

given in the sequel of this paragraph. 

Simple one-stage cluster sampling is a sampling plan in which clusters are 

chosen by simple random sampling and, within each sample cluster, all listing units 

are selected. Simple two-stage cluster sampling is a sampling plan in which clusters 

are selected at the first stage by simple random sampling and, within each sample 

cluster, listing units are selected at the second stage by simple random sampling. 

Finally, simple multi-stage cluster sampling involves more than two stages for the 

selection of the sample. In this chapter we will present the sampling design of simple 

one-stage cluster sampling.  

2.5.2. Notation 

N : number of clusters in the population 
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n : number of clusters in the sample 

iM : number of units in cluster Nii ...,,1, =  

jiY : the j unit−  of the i cluster−  

m : the sample mean size of the clusters, 

m  = 
n

1 ∑
=

n

i

im
1

 

M : the number of the units in the population, 

=M
1

N

i

i

M
=
∑  

M : the population mean size of the clusters, 

M =
N

M
 

iY : the total of the characteristic Y  in i -cluster, 

iY =
1

im

ji

j

Y
=
∑  

Y : the population total, 

Y = 1

N

i

i

Y

M

=
∑

 

Y : the population total, 

Y MY= =
1

N

i

i

Y
=
∑  

y : the sample mean, 

y =

∑

∑

=

=
n

i

i

n

i

i

m

y

1

1  

A : the number of units in the population with the specify property 
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P : the proportion of the population with the specify property, 

=P 1

1

N

i

i

M

i

i

A
A

M
M

=

=

=
∑

∑
 

ia : the number of units with the specify property in cluster i  

p : the sample proportion with the specify property, 

=p

∑

∑

=

=
n

i

i

n

i

i

m

a

1

1   

2.5.3. Estimation of population mean Y  and population total Y  

The population mean Y is estimated by Cy , so 

 CŶ  Cy≡ =  

∑

∑

=

=
n

i

i

n

i

i

m

y

1

1  (2.40) 

The population total Y  is estimated by CyM  if M  is known, so 

 CŶ  ≡  CyM =

∑

∑

=

=
n

i

i

n

i

i

m

y

M

1

1  (2.41) 

The estimators CŶ  and CŶ  of Y  and Y  correspondingly are not unbiased, like 

the ratio estimators.  

Corollary 2.16. The variance of Cy  is approximately 

 )( CyV  ≈  
2

1

Mn

f−
2

1

( )

1

N

i i

i

Y Ym

N

=

−

−

∑
 (2.42) 
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and is estimated by  

 )(̂ CyV  ≡  )(2

Cys  ≈  

2

1

2

( )
1

1

N

i C i

i

Y y M
f

nM n

=

−
−

−

∑
 (2.43) 

(If M  is unknown, we estimate it by m ) 

Corollary 2.17. The variance )ˆ( CYV  = )( CyMV  is estimated by 

 )ˆ(̂ CYV  ≡  2 ˆ( )Cs Y CysM (22 ) =
1

)(
1 1

2

−

−
− ∑

=

n

myy

n

f

n

i

iCi

 (2.44) 

Generally, these estimators are biased and provide good estimation for n≥20. 

2.5.4. Estimation of proportion 

For the estimation of the proportion P  of units in a population with a specify 

property, we have the following estimator 

 CP̂ = Cp =

∑

∑

=

=
n

i

i

n

i

i

m

a

1

1  (2.45) 

ia  is the number of units in i -cluster with the specify property 

(The estimator CP̂  is not unbiased) 

Corollary 2.18. The variance of CP̂  is approximately 

 ˆ( )CV P  ≈  
2

1

Mn

f−
2

1

( )

1

N

i i

i

A PM

N

=

−

−

∑
 (2.46) 

and is estimated by  

)ˆ(̂ CPV  ≡  2s ( Cp ) =
2)1(

1

Mnn

f

−
− ∑

=

−
n

i

iCi mpa
1

2)(  (2.47) 
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2.6. Comparison of sampling methods 

In the previous paragraphs, we gave a short description about the sampling 

methods. Now we want to compare these methods, so we will mention the advantages 

and the disadvantages of each one. This reference is towards the direction to aid in the 

critical point of the choice of the appropriate method in a sampling survey. Usually a 

combination of methods is chosen. 

2.6.1. Simple Random Sampling 

Advantages 

•    Provide good estimators for characteristics of the population, with low cost. 

•    The estimators of characteristics (like mean, total, proportion) are unbiased 

estimators of the parameters with unbiased estimators of their variances. 

•    This method is implemented in a later stage of other methods. It is 

fundamental method. 

   

Disadvantages 

•    Provides estimators with large variance in relation with the estimator’s 

variances of the other methods. The disadvantages of the simple random 

sampling are referred during the description of the advantages of the other 

methods. 

 

2.6.2. Stratified Random Sampling 

Advantages 

•    Better estimation in relation of the simple random sampling because the 

variance in strata is smaller than in the whole population. 

CC BY: Attribution alone 4.0

https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.26219/heal.aueb.5554



33 

•    Representation of certain groups in the population.  

•    Because this method succeeds small variance, it is required smaller sample 

size, so lower cost.   

•    Provides separate estimation of the characteristics for each strata. 

•    Provides unbiased estimators. 

•    Every strata contains smaller size of units, so the selection of the sample 

becomes an easy procedure. We can also work with separate groups of 

researchers, every one for every strata. 

  Disadvantages 

•    Difficulties to the right separation of the population into strata and the strata’s 

definition. 

•    If the strata do not appear inhomogeneity for the characteristics, the variance 

will be the same with this in simple random sampling.  

2.6.3. Systematic Sampling 

Advantages 

•    The selection of the sample is very easy for the interviewer. 

•    Very useful and applicable to cases with large population size. 

•    Provides unbiased estimators if we follow right steps. 

Disadvantages 

•    In the case of periodic population, the variance of the estimators is increased. 

It could be more than the corresponding in simple random sampling. 

•    If we do not follow right steps, which we referred in the paragraph of the 

systematic sampling, this method may give unbiased estimators. 

•    When the size of the population is unknown we can not calculate with 

accuracy the sample interval k. So the samples may be smaller if k is 

overestimated. 
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2.6.4. Cluster Sampling 

Advantages 

• Reduced lower cost when the frame of the units of the population does not 

appear or it is constructed with great cost. 

• In the case where the cost of the collection of the information increases as 

much as the distance between the individuals in the population increases, the 

cluster sampling ensures lower cost in relation with the other methods. 

 Disadvantages 

• In contrast with the stratified sampling, in cluster sampling the elements 

within clusters should be as heterogeneous as possible and the clusters in a 

whole should be as homogeneous as possible. 

• Generally provides biased estimators. 
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3. CHAPTER 

THE IDEA OF THE SUPERPOPULATION APPROACH-

INFERENCE FOR SUPERPOPULATION PARAMETERS 

Introduction 

In the following chapter, we adopt the superpopulation approach in sampling 

from the finite population. We develop the basic concepts of the superpopulation. 

Then, we make inference for superpopulation parameters like superpopulation mean. 

In this section, the superpopulation inference is referred, at first instance, for 

population models without clusters. Later we make inference for a model that 

accommodates multiple levels (stages) of clustering in the population. The model we 

will develop comprises only two levels but similarly the methodology works for more 

than two levels. In the inference, we mention properties of estimators by incorporating 

both the randomness due to the sampling of the population as well as the randomness 

due to the generation of the population by a model. We find estimators for the 

superpopulation mean as well as its variance. 

3.1. The idea of the superpopulation approach 

3.1.1. Definition and notation 

In the previous chapter, we described sampling from finite population, an 

approach which is called in the literature as sampling under fixed population. In 

contrast, in the following chapter we will develop the idea of sampling from 

superpopulation (superpopulation approach).  

According to the superpopulation approach the population vector 

( 1y , 2y ,…, Ny ) is assumed to be a realization of a random unknown vector 

( ,1Y ,2Y …, )NY . In the following, we use the symbol ξ , for the common distribution 

of ( ,1Y ,2Y …, )NY .  

This approach has many advantages in relation with the approach of fixed 

population. The main advantage of the superpopulation approach, in contrast to the 
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classical one, is that it allows one to make assumptions about the distribution ξ . So, 

we can make use of a structure like linear trend or autocorrelation among the units 

that may appear in the population. The existence of structure in the population is quite 

common in practice. Especially in sciences like economy, agriculture, demography, 

industrial (quality control) etc. That makes the superpopulation approach appropriate 

for substantial. 

In the simple case of the superpopulation approach, we assume that there is no 

correlation among the variables ,1Y ,2Y ..., NY . In that way, the population 

( ,1Y ,2Y …, )NY  can be considered as a sample of size N  from a hypothetical infinite 

population. We adopt the idea of superpopulation approach, to have the ability to 

make assumptions for the common distribution ξ  of ,1Y ,2Y …, NY  and especially for 

their correlation. 

In practice, we assume the population vector ( 1y , 2y ,…, Ny ) as a realization of a 

random unknown vector ( ,1Y ,2Y …, )NY  with common distribution ξ , for which we 

suppose that general characteristics (like first and second-order moments) are known. 

Frequently, instead to the term of superpopulation, we call the above form 

superpopulation model. This happens, when we refer to the conditions which 

corresponds to iY  ( 1, 2,...,i N= ), which define a specify class of distributions. With 

the term conditions, we mean constrains or specific structure on the moments, means, 

variances etc. 

In more mathematical terms, the superpopulation model in its general form 

assumes that 

 iy = i iµ ε+ ,  ( 1,2,..., )i N=  (3.1) 

where iµ  is the deterministic part and iε  the random. For random vector 

ε = ( 1ε , 2ε ,..., Νε ), we assume that it has zero mean ( ( ) 0iEξ ε = ) and a positive-

definite covariance matrix. 

For example we refer to a very important superpopulation model, Cochran’s 

model (1946), where  

ξE ( )iy µ=  
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ξE ( )iy µ− ( )jy µ− = ξE ( iε jε ) = 2 ( )i jσ ρ − ,  1,..., (0) 1),i j N and ρ≠ = =  

 where 2,µ σ  are unknown superpopulation parameters of the model and ( )ρ ⋅  is the 

autocorrelation function. This is model (3.1) for iµ = µ  ( 1,2,..., )i N=  and 

ijV = 2 ( )i jσ ρ − . 

3.1.2. Necessity of the idea of superpopulation 

Sample survey inference is historically concerned with finite-population 

parameters, that is, functions like means and totals of the observations for the 

individuals in the population. However, in many scientific applications, interest 

usually focuses on the superpopulation parameters associated with a stochastic 

mechanism hypothesized to generate the observations in the population rather than the 

finite-population parameters. 

In classical sampling theory, the target of inference is finite-population 

parameters like the mean Y  of the N  unit values in the population. A stochastic 

model for the finite-population values is sometimes used to evaluate and suggest 

sample designs and estimators; see, for example, Cochran(1939, 1946). However, in 

scientific applications, the parameters associated with the stochastic model are of 

more interest than the finite-population parameters. Deming(1953) refers to inference 

for superpopulation parameters as an “analytic” use of survey data. 

3.2. Model without cluster 

3.2.1. Description and notation 

In this section a superpopulation model without clusters is considered. Here we 

will consider the properties of estimators that incorporate both the randomness due to 

the sampling of the population and the randomness due to the generation of the 

population by a model. Letting the subscript RS  refer to the (repeated) sampling 

randomness, the subscript F  refer to the model randomness, and no subscript refer to 

both sources of randomness. So, the usual decompositions for the expectation and the 

variance of an estimator θ̂  that will be used throughout are: 
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 ˆ( )E θ = )]ˆ([ θRSF EE , (3.2) 

 ˆ( )Var θ = )]ˆ([)]ˆ([ θθ RSFRSF EVarVarE +  (3.3) 

The population values are ( ,1Y 1η ),…,( KY , Κη ), where η  is a stratum indicator 

with range { }1, 2,..., L . We assume that the ( iY , iη ) are independent and identically 

distributed, each with the same distribution as the random vector ( , )ηΥ , which has 

the bivariate distribution function F . We restrict our attention to stratified simple 

random sampling. 

3.2.2. Estimating a superpopulation mean 

The target parameter is ( )FE Yµ = , which is to be estimated using stratified 

simple random sampling without replacement. Let hK  be the known number of 

observations in the h th− stratum in the finite population, 1, 2,...,h L= . Let hk  be the 

number of sampled observations in the h th−  stratum. The total number of 

observations in the sample, k = 1k + 2k ...+ + Lk  .  

The stratified mean is 

 y = h

L

h

h y
K

K
∑
=1

, (3.4) 

where hy  is the mean of the sampled observations in stratum h . The stratified mean 

is an unbiased estimator of the population mean Y , under repeated sampling of the 

same finite population. Letting the subscript wo , refer to the repeated sampling 

variance estimator treating the sample as if it had been a without-replacement sample. 

The repeated-sampling variance estimator of y  is  

 )(râv ywo  = ∑
=

L

h

h

K

K

1
2

2

h

hh

K

kK −

h

h

k

s2

 

where 2

hs  is the sample variance of the observations in the h th−  stratum. Under 

repeated sampling of the same finite population, )(râv ywo  is an unbiased estimator of 

the variance of y . 
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 However, it will be useful to consider the previous estimator treating the 

sample with replacement. The corresponding subscript to this estimator is wr . So, we 

have 

 )(râv ywr  = ∑
=

L

h h

hh

k

s

K

K

1

2

2

2

  

If we incorporate the randomness due to the sampling and the distribution 

function F , we have that y  is unbiased for µ . 

 (E y ) = )]([ yEE RSF µ=  (3.5) 

where y  = h

L

h

h y
K

K
∑
=1

. 

3.2.3. The variance of the estimator 

 (Var y ) = )]([)]([ yEVaryVarE RSRSF + =  

= 






 −
∑
=

L

h h

h

h

hhh
F

k

S

K

kK

K

K
E

1

2

2

2

+ [ ]YVarF =  

= ∑
=








 −
Ε

L

h h

hh
hFh

k

kK
K

K 1

2

2

1
σ + ∑

=

Ε
L

h

hFh K
K 1

2

2
)(

1
σ + ∑

=

L

h

hhF KVar
K 1

2
)(

1
µ =  

= ∑
=









Ε

L

h h

h
Fh

k

K

K 1

2
2

2

1
σ  + betw

K
∆

1
  

where betw∆ =∑
=

L

h

h

1

π ( 2)µµ −h  is the between-strata variability of the hµ , 

hπ ≡ ( / ) ( )hE K K P hη= = , 2

hS  is the variance of the population values in the h th−  

stratum, hµ  and 2

hs  are the mean and the variance of Y  in the h th−  stratum with 

respect to the F  distribution. We note also that it is straightforward that:  

 µ = ∑
=

L

h

hh

1

µπ    
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 We obtain an unbiased variance estimator of y , if we add an unbiased estimator 

of )(YVarF  to )(râv ywo  or equivalently, add an unbiased estimator of betw
K

∆
1

 to 

)(râv ywr . 

 We have the following equations:  

 )(ˆ YraV = 2

1

)(
1

1
yy

K

K

K
h

L

h

h −
− ∑

=

+ ∑
=










−
−

−
L

h h

hh

Kk

KK

K

K

K 1 )1(
1

1 2

hs  

 betw∆̂ = ∑ ∑
= = −

−
−−

−

L

h

L

h h

hhh
h

h

k

s

KK

KKK
yy

K

K

K

K

1 1

2
2

)1(

)(
)(

1
 

 ∑
=

−
−

=
L

h

h
h

F YY
K

K

K
EYraVE

1

2 ))(
1

1
()(ˆ( + ∑

= −
−L

h

h
h

F S
K

K

K
E

1

2 )
1

11
( = ( )FVar Y  

Therefore, 

 )(ˆ yraV SP = )(râv ywo + )(ˆ YraV  (3.6) 

or equivalently, 

 )(ˆ yraV SP = )(râv ywr +
K

1
betw∆̂  (3.7) 

is an unbiased estimator for ( )Var y . 

3.3. Two-stage Model with clusters 

3.3.1. Description and notation 

In the following section, we consider a model that accommodates multiple 

levels of clustering in the population. The model we will develop, comprises only two 

levels. The population consists of K  primary clusters, the i th−  of which consists of 

iN  secondary clusters. In the j th−  secondary cluster of the i th−  primary cluster, 

there are ijM  population values with total ijT = 1ijY ...+ +
ijijMY . The i th−  primary 

cluster has associated with it a stratum variable iη ∈{1, 2,..., }L  and a size variable iZ  

which will be used for probability-proportional-to-size sampling. We assume that 
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{( , )}ij ijM T , (note that 1, 2,..., )ij N= , are independent and identically distributed with 

mean ( ), ii ra  and variances-covariances ( i11σ , i22σ , i12σ ) and that the 

( ia , ir , i11σ , i22σ , i12σ , iN , iZ , iη ) are independent and identically distributed from 

an eight-dimensional random variable with distribution function G . 

In this section we describe the multistage (two-stage) sampling considered and 

the notation for the estimation of the superpopulation mean using a weighted mean. 

At the first stage of sampling, hk  primary clusters are sampled from the hK  primary 

clusters in stratum h  as a probability-proportional-to-size sample without 

replacement. That is the primary clusters are the primary sampling units(PSU’s) and 

the inclusion probability of a given PSU in stratum h  is proportional to its Z  value. 

At the second stage of sampling, we assume that hin  secondary clusters are sampled 

with replacement from i th−  sampled PSU from stratum h . We do assume that the 

sample weights (inverses of the inclusion probabilities) are known for all sampled 

observations. 

3.3.2. Estimating a superpopulation mean 

Let , 

hijt =∑
=

hijm

l

hijlhijl yw
1

, hijd =∑
=

hijm

l

hijlw
1

 

where hijly  and hijlw  are the population value and the sample weight of the i th−  

sampled observation in the j th−  sampled secondary cluster in the i th−  sampled 

PSU of stratum h , and hijm  is the number of sampled observations in that secondary 

cluster. Letting  

hit =∑
=

hin

j

hijt
1

,  hid =∑
=

hin

j

hijd
1

 

So, we have under repeated sampling of the population 

 
1 1

hkL

hi

h i

t t
= =

=∑∑ ,  
1 1

hkL

hi

h i

d d
= =

=∑∑  
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which are approximately unbiased estimators of the total of Y  and the population 

size, respectively .  

The weighted estimator of Y  and µ  is y =
d

t
 

 ( ) ( )
t

E y E
d

µ= =   (3.8) 

3.3.3. The variance of the estimator  

In this section we will make inference for the superpopulation mean ( )y . Under 

repeated sampling of the same finite population, a variance estimator of y  is given by 

Korn and Graubard(1998) 

 )(ˆ yraV wo = [ ]












+−−−⋅











−∑∑∑

= =

L

h

whjhjhihi

k

i

k

ij hij

hjhi
Ksdytdyt

d

h h

1

22

1
2

)()(1
1

p λ

λλ
  

where 

 2

ws = ∑∑
= =

L

h

k

i

hihihi

h

sn
K 1 1

21
λ . 

Furthermore, hiλ  is the inclusion probability of the i th−  PSU in stratum h , 

hijλ  is the joint inclusion probability of the i th−  and j th−  PSU’s in stratum h  and 

 2

his =
2

1

)(
)(

1

1
∑
=








 −
−−

−

hin

j hi

hihi
hijhij

hi n

dyt
dyt

n
 

 So, we obtain an asymptotically unbiased estimator of the variance of y  that 

incorporates the repeated-sampling variability as well as the model variability G  

 )(ˆ yraV SP = )(ˆ yraV wo + )(ˆ YraV  (3.9) 

where  

)(ˆ YraV = 







−−

− ∑∑
= =

L

h

k

i

whihihi

h

Ksdyt
K

K

d 1 1

22

2
)(

1

1
λ  

To avoid the necessity of specifying the joint inclusion probabilities for variance 

estimation due to the difficulty of the computation of this quantity, the sampling 
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design is frequently approximated as a with-replacement stratified probability-

proportional-to-size sample of PSU’s (Durbin, 1953). The repeated-sampling variance 

estimator is given by 

)(ˆ yraV wr = ∑ ∑ ∑
= = =−









−−−

L

h

k

i

k

j

hjhj

h

hihi

h

h
h h

dyt
k

dyt
k

k

d 1

2

1 11

2
)(

1
)(

1
.  

A second approximately unbiased variance estimator that does not require 

specifying the joint inclusion probabilities is given by  

 )(ˆ yraV aSP− = )(ˆ yraV wr + braV ˆ − wraV ˆ  (3.10) 

where 

braV ˆ = ∑ ∑
= =









−

L

h

k

i

hihi

h

h

dyt
Kd 1

2

1
2

)(
11

 

and 

wraV ˆ = ∑ ∑ ∑
= = =









−−−

−

L

h
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hjhj

h

hihi
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h
h h
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4. CHAPTER 

OPTIMAL SAMPLING METHODS UNDER A GENERAL 

CORRELATED POPULATION 

Introduction 

This chapter is comprised by models of autocorrelated finite populations. For 

each model, we develop the optimal sampling scheme which provides us with the best 

estimators. In the first section we refer to Blight’s model. We describe it and we 

mention that the optimal sampling scheme is the centrally located systematic design. 

This is proved by mathematical computations in which we use the Markov property 

and the Bayes’ theorem. We finish the part by finding the best estimators that 

correspond and finally with a very important comparison between the optimal 

sampling schemes with the random located systematic sampling and the simple 

random sampling. The second section assumes a generalization of Blight’s sampling 

designs. I.Papageorgiou and K.X.Karakostas (1998) consider with an autocorrelated 

finite population with an integer convex autocorrelation function ρ ( )⋅ . The results, 

with respect to the optimal design and estimators are presented. It is proved that 

Blight’s results hold for this more general case. The optimal design is a systematic 

one with an almost symmetrical structure. This design maintains and for the 

asymptotic case, respectively. The third section presents a research work of 

R.Mukerjee and S.Segupta (1989) who obtain the optimal estimation of finite 

population total under a fully general correlated model. They prove that the optimal 

design is equivalent with a minimization problem. The analytic solution of this 

nonlinear programming problem is not easy, however an algorithm may be very 

useful to this direction. However, the computational part of this work is very 

intensive. For this reason, Chang-Tai Chao proposes two designs which are based on 

the eigensystem of the population covariance matrix. We provide a detailed 

presentation of these designs and we describe how these designs select the sampling 

units. We show the sampling locations selected by these designs under the Gaussian 

model with Figures. Finally, we refer to the relative efficiencies of these designs to 

SRS under the Gaussian model from Chang-Tai Chao´s plots.   
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4.1.          Optimal sampling scheme for an autocorrelated finite 

population (B.J.N.Blight’s sampling designs) under Cochran’s 

model 

4.1.1. Description of the model with autocorrelated finite population 

In our experience, in many problems of sampling, the existence of 

autocorrelation among the members of the population is the rule rather than the 

exception. Cochran (1946) refers to several practical studies in which the variance of 

a population has been observed to increase with its size, and argues that this may be 

explained by considering the finite population to have been generated in sequence 

from a superpopulation with a monotonically decreasing autocorrelation function. 

This concept is obvious due to the fact that the relationship between near observations 

is stronger than that between distant observations. In this section we consider the 

problem of estimating the mean for a finite population that is generated by a simple 

linear Markov process.               

Let the deviations of the population values from the superpopulation mean µ , 

be 1θ , 2θ ,..., Nθ . We interest to estimate θ (= Nθθ ++ ...1 ) /Ν  from a sample of size 

n  taken without replacement from the population. Assume (x = 1,...,x nx )  is the 

sample and let the identification vector p  be such that if k  is the i th−  element of 

p , then ix = kθ . If we have ‘random sampling’ the elements of p  are sampled 

randomly without replacement from the first N  integers. Another sampling scheme is 

the systematic, where p  has the following form, 

{ }, ,..., ( 1)p i i k i n k= + + − .  

We shall call a systematic sampling scheme ‘centrally located’ if 2 1 ( 1)i N n k= + − − . 

In contrast we call it ‘randomly located’ if i  is chosen at random from the integers 

( )1,..., 1k − . 

We want to find the appropriate function of the data which minimizes the mean 

square error for θ  as the efficient estimator. According to the normality assumptions 
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described below it is easily shown that this estimator is E (θ x ) and its mean square 

error is var (θ )x . Next, we determine the choice of p  to minimize this variance. 

Each member of the population is assumed to have been generated by the model 

 tθ λ= 1−tθ + tε   ( 2,..., ,t N= 1λ < )  (4.1) 

where the { }tε  form an uncorrelated series each being distributed about zero with a 

constant variance, 2σ . The initial value, 1θ , is assumed to have a normal distribution 

with zero mean and variance 2σ 2 1(1 )λ −− . We must note here that it is necessary to 

have reliable estimators of the model parameters ,µ λ  and 2σ . 

4.1.2. Basic results 

In the following basic results we will make extensive use of Bayes’ theorem and 

the Markov property of the model. 

Let 

 S = hθθ ++ ...2 . 

 Initially, we want to determine ( )1 1, hf S θ θ + , 1( )f S θ  and 1( )hf S θ + . The 

integer h  represents the distance between the two consecutive observed points, 1θ  

and 1hθ + , in the population, and for the end intervals, h  represents the distance of the 

first observed point from the end. The Markov property of the model, as a function of 

iθ , gives 

1 1( , )i hf θ θ θ +  ∝  1( )h if θ θ+ 1( )if θ θ   ( 2,..., )i h= . 

The functions on the right are easily derived from (4.1) and equating the means 

of both sides we have, for 2 i h≤ ≤  

(E 1 1, )i hθ θ θ + = 2 1(1 )hλ −− ( ){ }1 2 1 1 1

1 1( )i h i h i h i

hλ λ θ λ λ θ− − + − + + −
+− + −  

Thus, it is straightforward that 

  1 1( , )hE S θ θ + = 1 1

2

( , )
h

i h

i

E θ θ θ +
=
∑ = )(

)1)(1(
11 ++

+−
−

hh

h

θθ
λλ

λλ
  (4.2) 

It may be shown similarly that 
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  1( )E S θ = 1
1

θ
λ
λλ

−
− h

, 1( )hE S θ + = 1
1

+−
−

h

h

θ
λ
λλ

  (4.3) 

Since (4.2) is the minimum mean square error estimator of S  from 1θ  and 1+hθ , 

then 

 1 1( , )hVar S θ θ +

2

1 1( ) ( ),
(1 )(1 )

h

hh
Var S Var

λ λ
θ θ

λ λ +

 −
= − + 

− + 
 

so we have 

  1 1( , )hVar S θ θ +
2

2

(1 )
,

(1 )

h ϕ
σ

λ
−

=
−

   (4.4)  

where  

  
1 1 1

1 1

h

hh

λ λ
ϕ

λ λ
+ −

=
− +

  (4.5) 

Furthermore, 

1( )Var S θ
2

2 2(1 )(1 )

σ
λ λ

=
− −

( ){ }212 )()1(2)1(1 hhh λλλλλ −−−−−− −     (4.6) 

It follows that 1( )hVar S θ + 1( )Var S θ= . 

Now we have the ability to determine ( )E xθ  and ( )Var xθ  by using any 

given identification vector p  in the previous expressions. We may assume, without 

loss of generality, that the elements of p  are in order of magnitude, so that if we 

define iS  to be obviously the sum of θ ’ s  between ix  and i hx + , 0S  to be the sum of 

θ ’ s  preceding 1x  and nS  the sum of θ ’ s  following nx , then, when p  is known, 

 
1

0 1 1

1

( ) ( | ) ( | , ) ( | ),
n

i i i n n

i

NE x nx E S x E S x x E S xθ
−

+
=

= + + +∑   (4.7)  

 
1

2

0 1 1

1

( ) ( | ) ( | , ) ( | ),
n

i i i n n

i

N Var x Var S x Var S x x Var S xθ
−

+
=

= + +∑   (4.8) 

where x  is the sample mean. 

4.1.3. Optimal sampling scheme for the model 
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The optimal sample allocation is this which minimizes the variance of the 

estimator, so we first work on the related problem of choosing an appropriate integer 

j  to minimize the conditional variance, 

 1

1

( , , )
m

i j m

i

Var θ θ θ θ
=
∑   (1 )j m< < . 

From equations (4.4), (4.5), (4.8), it follows that the above conditional variance 

is equal to 


















+
−

−
+

−−+








+
−

−
+

−−− −

−

−

−
−

)1(

)1(

)1(

)1(

)1(

)1(

)1(

)1(
1)1(

1

1
22

jm

jm

j

j

jmj
λ
λ

λ
λ

λ
λ

λ
λ

λσ  

Here, we can see that this function is minimized when we choose an integer j  to 

maximize 

 
jm

jm

j

j

−

−

−

−

+
−

+
+
−

λ
λ

λ
λ

1

1

1

1
1

1

 

 Similarly, after a little manipulation, it may be shown that this is equivalent to 

choosing j to minimize 

 1( ) j m jjψ λ λ− −= +   (1 )j m< <    

Now it is convenient to distinguish two cases for λ . The first one we assume that 

0λ >  and the second one 0λ < . When 0λ =  the conditional variance of θ  does not 

depend on p  and any design will suffice. 

Case 1. 0λ >  

 Let 

 

1
,

2

1
( 1),

2

m if m is even

r

m if m is odd




= 
 −


 

Then  

 1( ) ( ) )(1 )j m r r jj rψ ψ λ λ λ− − −− = − −   (1 )j m< <     

which can be seen to be nonnegative. So, the optimum value of j  is r . 

Therefore, when 0λ > , the variance is minimized by choosing the central of the 

three sample points, so that the intervals on either side of it are equal, or differ by one 
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unit. We can consider that the variance for a design based on n  unequally spaced 

sample points can be reduced by moving a sample point so that it is equidistant or as 

nearly equidistant as possible, from its neighboring sample points. Finally, we 

conclude at a design in which the internal intervals are either equal or differ by one 

unit. We can see that the optimal allocation is systematic in the case in which the two 

extreme sample points are chosen so that the distance between them is a multiple of 

( 1)n− . 

Now to determine the systematic design we must find the optimal choice of the 

interval spacing, h , as well as the end spacings, i , j . From the definition of h , i , j , 

it applies that 

 ( 1) 1n h i j N− + + = +  

The variance of this allocation, from the equations (4.4), (4.6), is 

 
2

2

)1(

)1)(1(

λ
σφ

−
−− hn

+
22

2

)1)(1( λλ
σ

−−
[ { }212 )()1(2)1)(1( iii λλλλλ −−−−−− − +

{ }212 )(2)1(2)1)(1( jjj λλλλλ −−−−−− − ]   (4.9) 

where ϕ  is known from (4.5). We consider that h , ( )i j+  are constant values. The 

variance is minimized with respect to i , if we choose i  to maximize  

2 2( ) 2 ( ) 2i i j jλ λ λ λ λ λ− − + − − . This is equal to 2 2( 1 ) (1 ) 2i j i jλ λ λ λ λ ++ − − − + − , 

from which it follows that we wish to choose i  to minimize ( )i jλ λ+ . So we finally 

have the solution 

 1i j or i j= = +   

 This result states the fact that the optimal systematic allocation is the centrally 

located. Now we want to determine the value of spacing, so we substitute i j=  into 

(4.9) and minimize with respect to h . After a little manipulation it follows that the 

optimum value for h  is that which maximizes 

  2 1
(1 ) ( )

1 1

i

h

nλ
λ λ

−
− +

+ +
  (4.10)  

where we know that 2 1 ( 1)i N n h= + − − . There is not a simple solution for h , but for 

small n , N  the previous function can be maximized numerically. In contrast for large 
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values of n , N  we should choose h  as large as possible so that it is greatest integer 

less than .
n

N
  

Case 2. 0λ <  

We observe that 

 2( ) (2) ( )(1 )m j jjψ ψ λ λ λ− −− = − −   (1 ),j m< <  

is nonnegative for 0λ < . Hence, the optimal value of j  is that which gives the 

minimum value to the previous function. There are two values, firstly 2j = , or by 

symmetry ( 1)j m= − . 

 We can conclude now that in this case the optimal deterministic allocation is a 

two cluster design. A design with more than two clusters can reduce its variance by 

moving sample points to the end two clusters. Similarly with the first case, the end 

spacings should be equal, with common value i . The optimum value of h  is that 

which maximizes  

 2 2(1 ) (1 )
1

i
jλ

λ
λ

−− + +
+

 

where 2 3i N n h= − − + . If N n−  is large then at least one of h  and i  must be large. 

When i  is large the best h  is 1 and in converse, so the overall optimum value for i  is 

1. Hence, the two clusters should be sampled at the extreme ends of the θ  sequence. 

4.1.4.    The best estimator 

We consider now the best estimator and its mean square error for the case 1, 

where 0λ > . In this case, the optimal sample allocation is a centrally systematic 

design as this has been shown. The elements of p  has the form 

{ }, ,..., ( 1)i i h i n h+ + − , where 2 1 ( 1)i N n h= + − −  and h  is chosen to maximize 

(4.10). From (4.2), (4.3) and (4.7) we have that 

  1(1 )
( ) { }

1 (1 )

h
i n

h

x xnh
E x x

N N

λ λ
θ ϕ λ

λ λ
++

= + −
+ −

  (4.11) 
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The previous estimator is comprised by two components. The first one is the 

principal component, which is x
N

nh
φ . The second one is negligible in most of the 

cases. For example, if population and sample sizes are large. Even for small values of 

n , N  this component will be small if h , i  are chosen to maximize (4.10). 

 Correspondingly, from (4.4), (4.6) and (4.8) the mean square error for this 

estimator is 

 
2

2 1 1

2 2 2
( | ) [(1 )( ) 2 { 1 2 ( 1) }

(1 ) (1 )

i h
Var x N n n n

N

σ
θ λ λ λ λ

λ λ
− −= − − − + − − −

− −
 

2
2 2( 1)( )

2( ) ]
1

h
i

h

n λ λ
λ λ

λ
 − −

− − + 
+ 

  (4.12) 

4.1.5. Randomly located systematic sampling-Comparison with the 

optimal sampling scheme 

In the following chapter we describe another commonly used sampling scheme 

which is the randomly located systematic sampling. Then, we find estimator for  θ  , 

its mean square error and we compare the efficiency of this scheme with the optimum 

centrally located systematic design. 

A randomly located systematic sample has identification vector 

 { }, ,..., ( 1)p j j h j n h= + + −  

where j  is chosen at random from the integers, 1,..., (2 1)i − , where 

2 ( 1) 1i N n= − − + . 

The best estimator of θ  of the randomly located systematic design is 

 
2 1

1(1 ) (1 )
( | ) { }

1 (2 1)(1 ) (1 )

h i

n

h

x xnh
E x x

i N

ϕ λ λ λ λ
θ

λ λ λ

− ++ −
= + −

Ν + − − −
. 

 We notice that the first component of the estimator is the same with the case of 

the optimum design (centrally located systematic design). Hence, we confirm that the 

second term of the equation is affected by the randomization. 

We would like now to compare the mean square errors of the two different 

systematic designs (randomly and centrally located). So, let ∆   represent the 
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difference of the mean square error of the randomly located systematic design from 

the mean square error of the centrally located systematic design. It may be shown that 

 ∆ =








−
−−

−
−−

−
i

i

iN
λ

λ
λλ

λλ
σ

)1)(12(

)1(

)1)(1(

2 12

222

2









−−
−

−−+
−

)1)(12(

)1(
)1(2

12

λ
λλ

λλ
i

i
i  

A very interesting comparison is made by B.J.N.Blight (1973) in paper 

“Sampling from an autocorrelated finite population” where he develop 

mathematically the reduction in the variance contribution of the end spacing due to 

the use of a centrally located systematic design rather than a randomly located design 

in a Table(4.1). These are expressed as percentage reductions of the end spacing 

variance of the randomly located design. The parameters are the autocorrelation 

parameter λ  and the end spacing i . 

 

Table 4.1. Reduction in the variance contribution of the end spacing 

 

 

  

 

 

 

 

 

 

We can notice in Table 4.1 that greater reduction occurs for high correlation λ  

and for small spacing i . However, usually the reductions are fairly small, apart from 

the previous extreme cases. Hence, we may conclude that the position of the first 

sample point is not critical. Furthermore for large sample sizes, these reductions are 

also insignificant. So, there is little to choose between the two types of systematic 

design. 

 

             i    

       λ  2 5 8 10 

0,1 6,76 0,71 0,24 0,15 

0,25 17,15 2,71 0,91 0,55 

0,5 35,33 10,99 4,38 2,69 

0,9 77,46 55,94 43,84 37,95 
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4.1.6. Simple random sampling-Comparison with the optimal sampling 

scheme 

It would be significant a comparison between the simple random sampling with 

the optimum design. The significance of this comparison is derived due to the 

commonly use of the simple random sampling.  

The method of deriving the optimum estimator of θ  in the case of random 

sampling is not obvious due to the fact that the data vector x (sample) contains 

information on the unknown identification vector p . So, we concentrate to the best 

linear estimator. By minimizing { })( θ−xaE  with respect to a , we have that  

 
var( )

var( )
a

x

θ
=   

where  

 { }
2

2

2 2 2
( ) (1 ) 2 (1 )

(1 )(1 )
Var

N

σ
θ λ λ λ

λ λ
Ν= Ν − − −

− −
, 

 
2

2

( 1)
( ) ( )

( 1) ( 1) (1 )

N n N n
Var x Var

n N n N

σ
θ

λ
− −

= +
− − −

 

Then, the minimized mean square error for the sample mean is 
(1 )

var( )
a

a
θ

−
. 

We will refer two basic different cases. Let us begin with the case where 

,N n →∞  and  
N

h
n

=  remains finite and nonzero. Then, 

 
(1 )

2 (1 )
a

h

λ
λ λ

+
=

+ −
, 

and the mean square error of the best linear estimator is 

 
{ }h

h

)1(2)1(

)1( 2

λλλ
σ

−+−Ν
−

. 

The second case is when 1λ = . Then 1α =  and the mean square error is 

 
nN

NnN

6

)1)(( 2σ+−
. 

An interesting comparison can be made between systematic and random 

sampling assuming that ,N n  are both large. B.J.N.Blight (1973) in paper “Sampling 
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from an autocorrelated finite population” gives us percentage relative asymptotic 

efficiency of random to systematic sampling (Table 4.2). 

 

 

Table 4.2. Percentage relative asymptotic efficiency of random to systematic sampling 

 

   
1−h    

λ  0,2 0,1 0,04 0,02 0,01 

0,1 72,64 73,42 73,6 73,63 73,64 

0,25 42,54 44,44 44,92 44,98 44,99 

0,5 12,73 15,57 16,5 16,63 16,66 

0,9 0,07 0,13 0,32 0,46 0,51 

 

 

 

 

The Table 4.2 shows us, specifically for small values of autocorrelation parameter, 

that there is a substantial reduction in mean square error when we choose systematic 

sampling rather than random sampling. This reduction decreases for values of 

autocorrelation parameter λ  near 1. The conclusion is that it is better to prefer to 

choose systematic sampling to have better estimators (with lower mean square errors).  

4.2. Optimum sampling design for autocorrelated finite 

population with integer convex autocorrelation function 

(I.Papageorgiou and K.X.Karakostas) 

4.2.1. Description of the model 

In this chapter, we develop the theory of the optimum sampling under 

Cochran’s model when the autocorrelation function is convex. We will conclude that 

this is the centrally located systematic design, the same with Blight’s optimum design. 

This is significant, morever, from the point of view that, this case comprises a 

generalisation of Blight’s sampling designs. 
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We denote iY , ( 1,..., )i N=  the value of the study variable of the i th−  unit of 

the finite population S  with size N . Let { }1 2, ,..., ns i i i=  is the sample with size n  

from population S . We would like to estimate the population mean 
N

Y

Y

N

i

i∑
== 1 . We 

can assume that niii <<< ...21  and that iY ’s are a realisation of a superpopulation 

model and have a common distribution g  such that according to Cochran’s model 

θ=)( ig YE ,   )'()})({( 2
' iiY

iig −=−Υ−Ε ρσθθ    ( , ' 1, 2,..., )i i N=   (4.13) 

where 2,θ σ  are the unknown superpopulation parameters and ( )ρ ⋅  is the 

autocorrelation function. We interest here for the case in which the autocorrelation 

function is integer convex function. So, it follows for ( )ρ ⋅  that 

 ( ) 2 ( 1) ( 2) 0i i iρ ρ ρ− + + + ≥   ( 0,1, 2,..., )i N=  

4.2.2. Optimal sampling scheme 

We would like to find the optimum sampling scheme which minimizes the 

mean square error of the estimator. As we know, an estimator of Y  is the least square 

estimator denoted by 
N

Y
y si i

L

∑∈= . The mean square error of this estimator under the 

superpopulation approach is given by Karakostas (1990) 

 ' '

,

1
( | ) ( ) ( 2 )L n s n N S s n

N
MSE y s Var Y j j j j

nN n
= + Γ − Γ   (4.14) 

where ( , )kj k n N=  is an appropriate vector of ones,  

)( ss YVar=Γ , ),cov(, sSsS YY=Γ , with ),...,,(
21 niiis YYYY = ΄ and ΄YYYY NS ),...,,( 21= . 

It is straightforward that the minimization of the right part of the equation(4.14) is 

equivalent with the minimization of the following form 

  ( ) ( )∑∑ ∑∑
∈ ∈ ∈ ∈

−−−
si Sj si Sj

jiji
n

N
ρρ 2 .  (4.15) 
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Theorem 4.2.1.(I.Papageorgiou and K.X.Karakostas). If ( )ρ ⋅  is an integer 

autocorrelation function with (0) 1ρ =  and lim ( ) 0h hρ→∞ = , the sampling design 

which minimizes (4.2.3) is a systematic one with an almost symmetrical structure. 

 Before we start to prove this theorem we will explain what is systematic 

sampling with an almost symmetrical structure and we will mention a very useful 

Lemma. 

 Let { }1 2, ,..., ns i i i=  is a sample and we denote 1 ( 1,..., 1)j j jh i i j n+= − = −  to be 

the distance between two consecutive sampling points. We mention that 110 −= ih  

and nn iNh −= . The symmetrical structure in a sampling design occurs if nhh =0 , 

11 −= nhh  and so on. A sampling design has an almost symmetrical structure if 

1≤− −ini hh , with 
1

1,..., 1
2

i n= −  or 
1

( 1)
2

n−  when n  is even or odd, respectively. 

Lemma 4.2.1(Karakostas and Wynn, 1989). Every integer convex function ρ  

with lim ( ) 0h hρ→∞ =  can be written as 

 
1

( ) ( )r r

r

h hρ α ϕ
∞

=

=∑ ,   (4.16) 

where ra  are nonnegative constants with 1
1

=∑
∞

=r

rα  and 
r

hr
hr

+−
=

)(
)(φ  with 

 
, ( )

( )
0, ( )

r h r h
r h

r h

+ − >
− = 

≤
 

Proof of the Theorem 4.2.1.Lemma 4.2.1 shows us that the minimisation of (4.15) is 

equivalent to  

 
1

1 1
min[ ( ) 2 ( ) ]r

r i s j s i s j s

N
r i j r i j

n r r
α

∞
+ +

= ∈ ∈ ∈ ∈

 
− − − − − 

 
∑ ∑∑ ∑∑   (4.17) 

If we now minimize every term in (4.17) then nsSNnsn jjjj
n

N
,

'' 2 Γ−Γ  will also be 

minimized. For 1r N≥ −  the minimization of (4.17) involves  
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 [1
min ( 2 ) min ( 1)

i s j s i s j s

N
nN i j i j N nN N

r n ∈ ∈ ∈ ∈

 −
− + − + − = − + − − 

 
∑∑ ∑∑

{ }
1

0 1 0 1

1

2 ( ) 2 ( ... ) ... ( ... ) ]
n

i n n n

i

N
i n i h h h h h h h

n

−

−
=

− − − + + + + + +∑   (4.18) 

By the minimization of (4.18) we take the optimum values of , ( 0,1,..., )kh k n= . We 

can find these values by using Lagrange multipliers. So let 

 { }
1

0 1 0 1 0 1 1

1

( , ,..., ) 2 ( ) 2 ( ... ) ... ( ... )
n

n i n n n

i

n
Q h h h i n i h h h h h h h h

N

−

−
=

= − − − + + + + + + +∑  

)1...( 0 +−++− Nhh nλ , 

where λ  is Lagrange multiplier. By equating to zero the first derivatives of Q  with 

respect to , ( 0,1,..., )kh k n=  and λ  and solving the resulting equations with respect to 

nhh ,...,0 , we find first that  

  nhh =0 ,  11 −= nhh , …, 
1

2

1
1

2

1
+−

=
nn

hh       (4.19) 

when n  is even. Similar relations hold and for n  when is odd. Finally we get that 

  
n

N
hhh n ==== −121 ... ,  

n

nN
hh n

2
0

−
== .  (4.20) 

The shi '  must be integers so we have 

  i

N
h or

n

 =   
 1+




=
n

N
hi ,   ( 1,2,..., 1)i n= − ,  (4.21) 

while 0h  and nh  are equal to or to [ ] [ ]( ) / (2 ) ( ) / (2 ) 1N n n or to N n n− − + , where []  

stands for the integer part. All the previous theory and the determination of ih  (4.20) 

concerns to the case where 1r N≥ − . For the case where 1r N< −  not all of the shi '  

will appear in the system of equations from the use of Lagrange multipliers. However 

the right-hand side of this system will continue to have the same symmetrical 

structure as for 1r N≥ − , so shi '  has the same form with (4.20) in the case 1r N< − . 
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4.2.3. Asymptotic case  

We now consider the case in which ,n N  tend to infinity in such a way that 

N

n
f =  is a constant. Here in this case(Karakostas and Wynn, 1989), to find the 

optimum sampling design we have to minimize 

  nsn
n

jj Γ
∞→

'lim     (4.21) 

Firstly, we will find the sampling design which minimizes '

n s nj jΓ  for any value of 

,N n  with Theorem 4.2.2. 

Theorem 4.2.2.For given values of N  and n  the sampling design which 

minimizes the quantity nsn jj Γ'  is a systematic design with an almost symmetrical 

structure. 

The proof is based on the definition of a convex function. Here the convex 

function is the autocorrelation function ( )ρ ⋅ . 

Consider any sampling design 0 1 1{ , ,..., , }n ns h h h h−=  of size n  and assume 

another sampling design },,...,,{ 110

∗∗
−

∗∗∗ = nn hhhhs  with the property that 

nhh =∗
0 ,   11 −

∗ = nhh ,…, 01 hhn =∗
−  

We write the quantity nsn jj Γ'  as 

 +=Γ njj nsn

'





+++++∑ ∑

−

=

−

=

∗
+

∗
+

∗
1

1

2

1

11 )}()({)}()({
n

i

n

i

iiiiii hhhhhh ρρρρ ...+ +  

1 2 1 2 1{ ( ... ) ( ... ( )}n nh h h h h hρ ρ ρ∗ ∗ ∗
−+ + + + + + + + 




. 

 

Since we examine the case which the autocorrelation function ( )ρ ⋅  is an integer 

convex. By the definition of convexity it follows that 

 +≥Γ njj nsn

'





++
+++

+
+∑ ∑

−

=

−

=

∗
++

∗∗1

1

2

1

11 ...)
2

()
2

({
n

i

n

i

iiiiii hhhhhh
ρρ  
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}1 1 2 2 1 1...
( )

2
n nh h h h h h

ρ
∗ ∗ ∗

− −+ + + + + +
+ '

n s nj j= Γ , 

where s  is a sampling design of size n  with )(
2

1 ∗+= iii hhh  for 1,2,..., 1i n= − . From 

the definition of s , ∗s  we have for this sampling design that  

 ini hh −=   
1

( 1,2,..., 1
2

i n if n is even or= −  
1

( 1) )
2

n if n is odd−  (4.22) 

We will examine now what does it happen for the optimum sampling design 

when these values tend to infinity with 
N

n
f =  constant. We have the following 

Theorem. 

Theorem 4.2.3.In the asymptotic case, with N →∞ , n →∞ , 
n

f
N

=  is 

constant, and for an integer convex autocorrelation function ( )ρ ⋅ , the sampling 

sequence which minimizes (4.3.1) is a systematic one with the property that the 

distances between successive sampled units are equal or differ by one. 

We will describe the proof of the Theorem (4.2.3) from I.Papageorgiou and 

K.X.Karakostas. They use the following notation given in Karakostas and Wynn 

(1989) and Karakostas (1990). Let iX  is the indicator variable, 

0,

1,
i

if i s
X

if i s

∈
= 

∉
 

then define 

 11

1( ) #{ | 1 },r i r i i rN s X X and X+ + == =

 01( ) #{ | 0 1 1 09}r i r i i r i i rN s X X and X or X and X+ + += = = = = , 

 00 ( ) #{ | 0 0}r i r i i rN s X X and X+ += = =  

So the expression (4.3.1) can be written as 

  )()(
1

lim
1

11
isN

N

N

i

i
N

ρ∑
=

∞→
   (4.23) 

 We get from Theorem 4.2.2 that for any sampling design s , 
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 ∑ ∑
= =

≥
N

i

N

i

ii isN
N

isN
N 1 1

1111 )()(
1

)()(
1

ρρ . 

If we take the limits of the previous inequality we have that  

 
∞→N

lim ∑ ∑
= =

∞→
≥

N

i

N

i

i
N

i isN
N

isN
N 1 1

1111 )()(
1

lim)()(
1

ρρ  

So we finished the proof of Theorem(4.2.3) by obtaining that the optimum sampling 

sequence is s . The form of this sampling sequence is given by (4.22).  

 We can conclude that I.Papageorgiou and K.X.Karakostas show something very 

significant. We notice that Blight’s optimum sampling design is still optimum for any 

integer convex autocorrelation function. So in this section we have a generalization of 

Blight’s sampling designs. 

 

4.3. Optimal estimation of finite population total under a 

general correlated model(R.Mukerjee and S.Segupta) 

4.3.1. Description of the superpopulation model and notation 

We denote with iY   ( 1,2,..., )i N=  the value of the study variable of the i th−  

unit of the finite population U  with size N . We, then, consider a superpopulation 

model consisting of prior distributions a  such that 

  iiYE µα =)( ,  ijjjiiYE υµµα =−Υ− )})({( ,  (4.24) 

where αE  denote expectation with respect to a . This model imposes no constrains to 

ijV   ( , 1,...,i j N= ). Consequently, the variance-covariance matrix Σ  of iΥ   

( 1,..., )i N=  can be of any type. This in the most general case for a superpopulation 

model and it has been studied by R.Mukerjee and S.Segupta (1989). The objective 

here is again to estimate the population total 
1

N

i

i

Y Y
=

=∑ , an equivalent with respect to 

inference quantity with the mean Y , on the basis of a sample. The sample s  is a 
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subset of U  population, drawn according to a sampling design p  with positive 

inclusion probability iπ  for every unit i . pE  denotes expectation with respect to p . 

Furthermore, let nP  denotes the class of designs p  with fixed sample size n  and uL  

denotes the class of linear unbiased estimators 

  s si ii s
e b Yα

∈
= +∑    (4.25) 

 

where the sα  and sbsi '  are real constants satisfying the following equations 

 0)()( ==∑s ssp spE αα ,   ∑ ⊃
=

is si spb 1)(   ( 1,..., )i N=   (4.26) 

Finally nH  is the class of strategies ( , )p e  with nPp∈  and uLe∈ . We know that we 

derive the optimal strategy in the class of nH  under the model (4.24), when we will 

find the minimum of the expected variance }){( 2YeEE p −α . So we will work in this 

direction.   

4.3.2. Optimal estimator 

We consider a strategy ( , ) np e H∈ . Let sb  be a 1×n  vector with elements sib   

( )i s∈ . Furthermore, we denote sV  the submatrix of V  obtained by considering the 

units si∈  and let 1 be a 1N ×  vector with all elements unity. Using the equations of 

(4.26) we have that 

 ∑ ∑ ∑ ∑
= ∈

−++−=−
s

N

i si s

sssisiisp VspbVbspbYeEE
1

''22 11)()()(}){( µµαα  

∑ −≥
s sss VspbVb 1'1)('     (4.27) 

to hold, with the equality if and only if,  

  ∑∑
∈=

−=
si

isi

N

i

is ba µµ
1

   (4.28) 

for every s  with ( )p s . 

 Let 1 (( ))ij

s sV υ− = . Then we define for , 1,...,i j N=  
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  ∑ ⊃
=

ijs

ij

sij sp )(υφ    (4.29) 

and it follows the NN × matrix Φ  with its elements ijφ . 

 Theorem 4.3.1.For a given nPp∈ , under the superpopulation model (4.24) 

}){( 2YeEE p −α  ≥  1111 '1' V−Φ−  

for every nLe∈ , with equality if and only if *e e= , where e∗  is specified by (4.28). 

Further, a strategy ( , )p e  is optimal in nH  provided * *( , ) ( , )p e p e= , where p∗  is a 

sampling design that minimizes 11 1' −Φ  with respect to np P∈ . 

We will prove the Theorem(4.3.1). Let  

 1)',...,,( 1

21

−
Ν Φ== λλλλ ,  (4.30) 

where we denote sλ  as a 1×n  subvector of λ  given by the elements si∈  and 

  ∗
sb 1

s sV λ−=     (4.31) 

with its elements ∗
sib   ( )i s∈ . 

Equations (4.26), (4.29)-(4.31) give us that 

 1'1')(')(' 11 −−∗∗ Φ=Φ==∑∑ λλλλ spVspbVb sss ss sss , 

 ∑ ∑ −∗ Φ===
s s sssss spbspbVb 1'1'1)(')(' 1λλ  

Straightforward, by the previous equations we obtain 

  }){( 2YeEE p −α ∑ −Φ+−−≥ −∗∗

s sssss VspbbVbb 1'11'1)()()'( 1  

≥ 1111 '1' V−Φ−      (4.32) 

with equality if and only if (4.28) holds and further 

  ∗= ss bb     (4.33) 

for every s  with ( ) 0p s > . 
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 We finally conclude that the optimal estimator for a given p  under the model 

(4.24), is given by (4.28), (4.33), with *

sb  given by (4.31). So, we finished the proof of 

the Theorem (4.3.1).  

 It is interesting to consider the special case of a model (4.24) which has for 

Nji ≤≠≤1 , 2

1

)( jjiiij υυρυ =  with constant ρ , 
1

1
1N

ρ
−

< <
−

.  

Theorem 4.3.2.Under the superpopulation model (4.24) with 
1

2( )ij ii jjυ ρ υ υ=   

(1 )i j N≤ ≠ ≤  a strategy ( , )p e  is optimal in nH  if and only if 0i iπ π=  for every i   

(1 )i N≤ ≤  and e  is given by 

0

1

( ) /
N

i i i i

i s i

e Y µ π µ
∈ =

= − +∑ ∑  

for every s  with ( ) 0p s > . 

 Now we give the proof of this Theorem. The relation (4.29) shows here that 

 iiiii g πυφ 1

1

−=   (1 )i N≤ ≤ ,  ijjjiiij g πυυφ 2

1

2 )(
−

=   (1 )i j N≤ ≠ ≤  

where  

 
})1(1){1(

)2(1
1 ρρ

ρ
−+−

−+
=

n

n
g  ,  

})1(1){1(
2 ρρ

ρ
−+−

−
=

n
g  

and ijπ  is the joint distribution probability of units i  and j . 

By defining 
1 1

2 2
11( ,.., )S υ υΝΝ= , it is shown that 1 2 ( 1)S S g n g n n′Φ = + −  and that by the 

Cauchy-Schwarz inequality, 2(1 ) /S S S S S′ ′ ′Φ ≥ Φ . Hence  

 
1

1 1 22

1 1

1 1 1 1 (1 ) ( )
N N

ii ii

i i

V nρ υ υ− −

= =

 
′ ′Φ − ≥ − − 

 
∑ ∑  

with equality if and only if SΦ  is proportional to 1 or equivalently  
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1

2

01

2

1

( )

ii
i iN

ii

i

nυ
π π

υ
=

= =

∑
 

for every i   ( 1,..., )i N= . Now it follows that for any p  with 0i iπ π=   ( 1,..., )i N= , it 

is easy to verify that 1

0si ib π −=  so the theorem is obvious.  

4.3.3. Optimal sampling design 

In the previous paragraph we mentioned that the optimal design requires the 

minimization of  11 1−′Φ  with respect to nPp∈ . The analytic solution of this nonlinear 

programming problem is not easy, however there are some algorithms may be 

available that help to this direction. 

Let 

( ){ }1 2 1, ,..., :1 ...n nS i i i i i N= ≤ < < ≤  

is the set of all the possible s . A design p  in nP  may be represented by nonnegative 

quantities { ( ), }p s s S∈ . It is obvious that ( ) 1
s S

p s
∈

=∑ . By the definition of ijφ  we 

denote  

 ( ) ( )
s S

p s T s
∈

Φ =∑ , 

where (1,..., )s n=  and the N N×  matrix (1,..., )T n  is defined as 

 
1

1... 0
(1,..., )

0 0

nV
T n

− 
=  
 

, 

1...nV  is the n n×  submatrix of V  given by the n  rows and columns. 

Theorem 4.3.3.A design { ( ), }p s s S∗ ∈  is optimal in the sense of 

minimizing 11 1−′Φ , that is maximizing - 11 1−′Φ , in nP  if and only if  

( ){ } 1
1 1

0
( , ) lim [1́ ( ) 1 1 1 ( ) 1] 0

c
F s c ΄ c cT s

+

−∗ − ∗ − ∗

→
Φ = Φ − − Φ + ≤    (4.34) 
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for every s S∈ , where ( ) ( )
s S

p s T s∗ ∗

∈

Φ =∑ . 

The matrix ( )T s  is nonnegative-definite for each s , so from (4.34) it follows that a 

design { ( ), }p s s S∗ ∈  is optimal in nP  if and only if  

 1 1 1( , ) 1́ ( ) ( )( ) 1 1 ( ) 1 0F s T s ΄∗ ∗ − ∗ − ∗ −Φ = Φ Φ − Φ ≤   (4.35) 

for every s S∈ . 

A numerical determination of the optimal design is very difficult. A version of 

W-algorithm (Silvey, 1980, pp 29-30) can help us to this determination.We mention a 

brief description of  this version of W-algorithm. 

Let δ  be a pro-assigned positive quantity and 0 1kc< <  be a real sequence 

which has 0lim =kc  and kc∑  divergent. Firstly we can assume that the design 

1

1( )
N

p s
n

−
 

=  
 

 

for each s S∈ . Let { ( ), }p s s Sκ ∈  for 1, 2...k =  be the design in k th−  iteration and 

( ) ( )k

s S

p s T sκ
∈

Φ =∑ . The iteration of the algorithm stops at k th−  stage if 

max ( , )s S kF s δ∈ Φ < . Otherwise, we continue to the ( 1)k +  stage of iteration with the 

design which follows 

 
1 ( 1)

1

1 ( 1) 1 ( 1)

(1 ) ( ), ,
( )

(1 ) ( ) , ,

k

k

k

c p s s s
p s

c p s c s s

κ κ

κ κ κ κ

+ +

+
+ + + +

− ≠
= 

− + =
 

where ( 1)s κ +  maximizes ( , )F sκΦ  over the set S . It follows that  

 1 1 1 ( 1)(1 ) ( )k k k k kc c s+ + + +Φ = − Φ + Τ . 

 We can see that when the algorithm terminates at the k th−  stage so we have 

that 1 11 ( ) 1 1 ( ) 1΄k
΄ ΄ δ− ∗ −Φ < Φ +  where ∗Φ  corresponds to the optimal design. Thus the 

algorithm leads to the minimum possible value of 11 1΄
−Φ . 

 Now we mention and give the mathematical solution of an example, which is 

relative with the theory of optimal design under a general correlated model 
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(Biometrika, paper ´Optimal estimation of finite population total under a general 

correlated model´ by Rahul Mukerjee and S.Sengupta, page 791). 

 Example 4.3.1.Let the population size 4Ν =  and the sample size 2n = . Assume 

that 2 2

iiυ σ=  for 4,...,1=i , 20.5ijυ σ=  for 1 3i j≤ ≠ ≤  and otherwise 0ijυ = . So we 

have the following V  matrix. 

 2

1 0.5 0.5 0

0.5 1 0.5 0

0.5 0.5 1 0

0 0 0 1

V σ

 
 
 =
 
 
 

 

Let  

 1(1, 2) (1,3) (2,3)p p p q= = = , 

 2(1, 4) (2, 4) (3, 4)p p p q= = = . 

It follows that 

 1 2 1 2 2 1

1 1
3 3 1

3 3
q q q q q q+ = ⇔ + = ⇔ = −   (4.36) 

 By the Theorem 4.3.1, a strategy ( , )p e  is optimal in nH  provided 

( , ) ( , )p e p e∗ ∗=  , where p∗  is a sampling design that minimizes 11 1' −Φ  with respect to 

np P∈ . Hence, we would like to minimize 11 1' −Φ  to find the optimal design p∗ . So 

we will find firstly the matrix Φ . 

 
,

( )ij

ij s

s i j

p sυ
⊃

Φ = ∑  

 where 1(( ))ij

s sVυ −=  is the ( )i j− − element of the inverse of the submatrix of V  which 

arises if we keep the rows and the columns which correspond to the elements of the 

sample. We compute now the 1

sV −  for all s S∈ . 

 { }
1

1,2s
V

−
⊃ =

1

2

15.0

5.01
−

















σ

2

4 2

1 3 3

2 4

3 3

σ

− 
 

=  
− 

 
 

2
2 12

1 23
σ

− 
=  − 

 

Similarly 
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 { }
1

1,3s
V

−
⊃

2
2 12

1 23
σ

− 
=  − 

, { }
1

2,3s
V

−
⊃

2
2 12

1 23
σ

− 
=  − 

 

 { }
1

1,4s
V

−
⊃

1

2
1 0

0 1
σ

−
  

=   
  

2

1 01

0 1σ
 

=  
 

 

Similarly 

 { }
1

2,4s
V

−
⊃ = 









10

011
2σ

, { }
1

3,4s
V

−
⊃ 2

1 01

0 1σ
 

=  
 

. 

 

Below we compute separately every element of the matrix Φ . 

 
1 2 3

11 11 11

11 1 2 3( ) ( ) ( )s s sp s p s p sυ υ υΦ = + +  

where 1 2 3, ,s s s  are the tree possible samples which contain the element 1. 

{ }2,1 ,{ }3,1 ,{ }4,1  correspondingly. Hence, we have 

 11Φ = 12
2

3

2
q

σ 12

2
2

3
q

σ
+ 22

1
q

σ
+  ⇔  11Φ 12

8

3
q

σ
= + 22

1
q

σ
 

Similarly  

 12Φ = 21Φ
1

12

1( )s p sυ= 1 12 2

2 2
( 1)

3 3
q q

σ σ
= − = −  , 

 13 31 1

2

3
qΦ = Φ = − , 

 23 32 12

2

3
q

σ
Φ = Φ = − , 

 22 33Φ =Φ = +123

8
q

σ 22

1
q

σ
, 

 14Φ = 41Φ = 24Φ 42= Φ = 34Φ = 43 0Φ = , 

 44Φ =
2

3

σ 2q . 
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 Φ =



























+−−

−+−

−−+

22

22121212

12221212

12122212

3
000

0
1

3

8

3

2

3

2

0
3

21

3

8

3

2

0
3

2

3

21

3

8

q

qqqq

qqqq

qqqq

σ

σσσσ

σσσσ

σσσσ

 

 ⇔
2

1

σ
Φ =

























+−−

−+−

−−+

2

2111

1211

1121

3000

0
3

8

3

2

3

2

0
3

2

3

8

3

2

0
3

2

3

2

3

8

q

qqqq

qqqq

qqqq

 

We substitute (4.36) in Φ  we calculate 11 1΄
−Φ  and we find that 

 11 1΄
−Φ 1

1 1

13 5
2

(3 1)( 1)

q

q q

−
=

− +
 

Finally, we want to minimize 11 1΄
−Φ , so we find the first derivative of this. 

 1(1 1)΄ ΄−Φ
2

1 1

2

1 1

6(13 10 1)

(3 1) ( 1)

q q

q q

− − +
=

− +
 

We find 1q  which 1(1 1) 0΄ ΄−Φ = . We have the following two solutions: 

1) 0.1182a q =  

1) 0.6511b q =  

The solution b  is rejected because from (4.36) it follows that 2q  is negative and this 

not possible because 2q  is probability. So we have that 

1 0.1182q = , 2 1

1
0.2152

3
q q= − =  

It is shown that the optimal design is given by p∗ , where  

 
(1, 2) (1,3) (1, 4) 0.1181

(1, 4) (2, 4) (3, 4) 0.2152

p p p

p p p

∗ ∗ ∗

∗ ∗ ∗

= = =

= = =
 

By (4.28) and (4.33), the optimal strategy in nH  is ( , )p e∗ ∗ , where 
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 ( )e s∗

4

1

4

4 4

1

1.7889 ( ) , 1 3,

2.6834( ) 1.5489( ) , 1 3

i i i

i s i

i i i

i

Y i j

Y Y i

µ µ

µ µ µ

∈ =

=


− + ≤ ≤

= 
 − + − + ≤ ≤


∑ ∑

∑

p

     

It can be checked finally that this optimal design satisfies (4.35). 

4.4. Optimal design under a correlated population based on 

the eigensystem of the population covariance matrix (Chang-Tai 

Chao).  

4.4.1. Description of the model 

 In this chapter we assume a model with a correlated population and we examine 

the selection of n sampling units out of N  units to predict the population quantity of 

interest. More specifically, we have a correlated spatial population and we show that 

we can obtain lower prediction mean-square error with careful sampling arrangement 

of the sampling sites. An example is that the systematic design can be used to select 

samples for better prediction results. However, it is only effective under certain 

population covariance structures. So, we mention in this chapter two sampling 

methods of Chang-Tai Chao, which are based on the eigensystem of the population 

covariance matrix. Other authors give computationally intensive algorithms to find the 

optimal sample by minimizing the mean-square error. The advantages of the two 

methods of Chang-Tai Chao, which we will develop below, are that it is not required 

computationally intensive algorithm. Furthermore, these methods require fewer 

population assumptions. 

Assume that the population consists of N  units labelled 1, 2,..., N . Let 

),...,,( 21 Nyyyy = ´ be the vector of the values of the variable of interest which is 

considered as a realization of a random vector ),...,,( 21 NYYYY = ´. Let s  be the sample 

of n  units selected from the population and sy , the vector of y  values associated with 

s , be the vector of observed values. We assume that ( )T Y  is the population quantity 

of interest. We would like to find an optimal sampling strategy which contains an 
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unbiased estimator ˆ( )T Y  and a appropriate design that can select s  to minimize the 

conditional mean-square error of T̂  given s , 

])ˆ[( 2
sTTE −  

Let Y  be the population random vector with mean vector 1 2( , ,..., )µ µ µ µΝ= ΄, 

where ( )i iµΕ Υ =  and Covariance matrix 

, 1,...,( ) { }ij i j NVar Y σ == Σ =  

where 
( ),

( , ),

i

ij

i j

Var Y if i j

Cov Y Y if i j
σ

=
=  ≠

   

We consider here the prediction of the population total 
1

( )
N

i

i

T Y Y
=

=∑ . We select 

n sampling units out of N  population units to predict the previous population quantity 

( )T Y . 

4.4.2. Sampling designs based on the eigensystem of the population 

covariance matrix  

The main object in this section is to find the best prediction result. So, we would 

like to select the sample, which give us the conditional mean-square error as small as 

possible. One could suggest searching one by one all the possible samples to examine 

its mean-square error. Since the population size is finite, the number of different 

possible samples is finite as well. However, the number of samples is 








n

N
. This 

number is extremely large in the most of the cases. Hence, this idea of a complete 

enumeration is not convenient.  

 An idea is that the sampling units that can give lower mean-square prediction 

error are the units that have better prediction ability from the other unselected. 

Consequently, one would like to select the units that account for as much total 

population variability as possible. 
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 Let 

Ν≥≥≥ λλλ ...21  

be the ordered eigenvalues of Σ  and  

 Neee ,...,, 21  

be the associated normaliyed eigenvectors. The Ν -dimensional coordinate system can 

be rotated into a new Ν -dimensional orthogonal coordinate system, in which the Ν  

axes are the linear combinations of the original variables, such that the coefficients of 

the i th−  linear combination, denoted as , 1, 2,...,iX i N= , are the components of the 

ith eigenvectors ie . It follows, 

 1 1 2 2 ...i i i i iN NX e΄Y e Y e Y e Y= = + + +  

where ije  is the j th−  component of the i th−  eigenvector and we have the below 

matrix e ,  

 

11 12 1

21

1

N

N NN

e e e

e
e

e e

 
 
 =
 
 
 

K

O K M

M K O M

K K

 

The ije  is also known as the i th−  principal component in the principal component 

analysis (PCA). The variability in Y  is extracted into the variances of uncorrelated 

random variables, iX . Furthermore, 

 
1

( )
N

i

i

Var Y
=

=∑ ∑
=

N

i

iXVar
1

)(  

and the variance of iX  is 

 ( ) 1,2,...,i iVar X i Nλ= ∀ =  

If we are looking for the units which account more in the total variability, a 

reasonable candidate(s) would be those of the original variables that are strongly 

associated with the leading PCAs. The absolute value of the loadings of iY  in the 

PCAs is an indicator of this association. 
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 We described previously theoritically the general idea of the eigensystem of the 

population covariance matrix and we gave the reason why a design based on this 

intuition can offer us better prediction results. We will develop now two sampling 

designs of Chang-Tai Chao which are based on the eigensystem of the covariance 

matrix. In addition, we will see that these designs can select s  to minimize the 

conditional mean-square error. Chang-Tai Chao propose these sampling designs to 

select  

 { }1 2, ,..., ns i i i= ,  { }Ni j ,...,2,1∈  

with a fixed sample size n . 

Design 1 

 The n  sampling units in this design, are selected based on the component that 

have the largest absolute value in each of the first n  eigenvectors. We describe below 

the steps. 

  

1 1 1

,

1: , max

: , max

j i
i

k kj ki
i i s

Step i j e e

Step k i j e e
∉

= =

= =

M   

repeat step k  till k n= . 

 

Design 2 

 In the design 1 the sampling units are selected based on the magnitude of their 

corresponding components in the first n  eigenvectors. In this Design now, the units of 

the sample are selected depending not only on the magnitude but also on the sign of 

their corresponding components in the leading eigenvectors. We describe the 

following steps of this Design. 

 
1 1

1 2

1: { }, max

1: 1: { , ,..., },

j i
i

m

n s j e e

n Step Let s΄ j j j m N

= = =

> = <
 

where  

 
11 je

21 je≥
Nm jj ee 11 ...... ≥≥≥≥ . 
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The number m  is an integer which indicates the number of units in s΄  and it can be 

appropriately specified before the survey according to the population size Ν . 

  :Step k Let tmps = { }21,ll  where ,1l  2l  satisfy: 

1. 1,l  2l  not having been selected into s . 

2. 
1kle max ki

i
e=  

3. 
2kle

0
1

max
e ekj kl

i
⋅

=
p

kje  

 Units ,1l 2l  will be added into s  by 

 
2( 1) 1 2 1 2

2( 1) 1

, , 2 1

, 2( 1)

k k

k

i l i l if n k

i l if n k

− −

−

= = ≥ −


= = −
 

repeat step k  till 2 1 2( 1)n k or n k= − = − . 

Final adjustement: Let 
1i

s− 2{ ,..., }ni i=  and 1 , ´p pi j j s= ∈  such that pj  satisfies 

 
1

( , )p imcor j s− 1

1

´
min ( , )

k
j sk i

k i
j s

mcor j s

∉ −

−∈
=  

where mcor  is the multiple correlation coefficient
∗  between unit kj  and the set 

1i
s− . 

4.4.3. Sampling locations in spatial Gaussian model 

In the previous section, we analyzed the two sampling designs of Chang-Tai 

Chao. Now we give an example of Chang-Tai Chao which shows us the sampling 

locations selected by these sampling designs for spatial Gaussian model. We assume 

that the population size 25N =  and the sample size 5n = . 

 

 

∗The multiple correlation coefficient between kXXX ,...,, 21  is denoted by 

2

1,(2,..., )

11

(1, (2,..., )) 1k

R
mcor k

R
ρ= = − , where ijR ρ= , R  is the determinant of R , 

11R  is the determinant of the new matrix which arises if from the matrix R  we 

eliminate the column and the row of the 11− element of the matrix. 
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In the spatial Gaussian model, the population random vector Y  follows a 

multivariate normal distribution 

~ ( , )Y N µ Σ  

where 

 1 2( , ,..., ) , { },N ij΄µ µ µ µ σ= Σ =   , 1,...,i j N=  

Here, a Gaussian-shaped spatial covariance function(Cressie, 1993) is used to 

generate Σ  

 )/exp( 222
chij −=σσ  

where h  is the Euclidean distance between sites i  and j . The parameter c  

determines the strength of covariance in the study region. The larger the c  is, the 

stronger the covariance between population units. In the simulation of Chang-Tai 

Chao, parameters values, 3.5, 0ic iµ= = ∀  and 12 =σ  are used. 

 

Figure 4.1 

 

  

We show first that the sampling sites(population units) are the crosspoints of a 5 5×  

rectangular grid(Figure 4.1). 
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Figure 4.2 

 

n=1 n=2 n=3 n=4 n=5 

     

 

Figure 4.3 

 

n=1 n=2 n=3 n=4 n=5 

     

 

 

 Figure 4.2 illustrates the sampling sites selected by the design 1 and Figure 4.3 

illustrates the  sampling sites selected by the design 2 respectively. It is assumed that 

m = 9 in design 2. 

 We can see in Figure 4.2 that the ideal sampling sites by design 1 should be 

spread symmetrically and evenly in the region study. However, this design does not 

give such an arrangement for n = 1,2,3,4. In Figure 4.3 the design 2 gives the same 

result as the design 1 for n=5. In design 2 we know that the selection of the sampling 

sites arises by taking into account the sign of ije and secting 1i  from s´according to the 

final adjustement. Figures 4.2 and 4.3 improve different arrangement of the sampling 

sites for n=1,2,3,4. 

 A quite common case is that where the sampling locations cannot be distributed 

as regular as in Figure 4.1. For example, an air pollution study where the monitoring 

sites might distribute irregularly at the study region. So, it would be very interesting to 

consider the case that the possible sampling locations are distributed randomly. We 
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will describe an application of Chang-Tai Chao. The coordinates of the locations of 

the 25 population sites are generated by a bivariate uniform distribution(( ii BA , ) be 

the coordinates, A i ~Unif(1,5), B i ~(Unif(1,5)). Chang-Tai Chao in the above 

mentioned work conclude for this example that it is more difficult to arrange the 

sampling sites symmetrically. We see also that design 2 do it better and the sampling 

sites has more symmetrical figure. 

4.4.4. Relative efficiency to simple random sampling 

A comparison between the proposed designs and the simple random sampling 

can be made to examine the performance of these designs. This comparison can be 

made based on the relative efficiencies of design 1 and 2 to simple random sampling. 

The relative efficiency of a design to simple random sampling is defined as the ratio 

of the mean-square prediction error obtained with SRS to that obtained with the 

design. A value greater than 1 indicates that the proposed design is more efficient. 

The population size used in this section is 81N =  and the population quantity of 

interest is the population total. 

T(Y) = 1 ΄

N Y=
1

( ) 1
N

N i

i

T Y ΄Y Y
=

= =∑  

where 1N  is a vector of length N  in which all elements are 1. The best linear 

unbiased predictor (BLUP) for the population total, 

 ´ ´ 1

1 1 1 [ ( )]n s N n s ss ss s sT w v w v−
−= + + Λ Λ −  

(Bolfarine and Zacks, 1992, p.25), where s  is an index set containing the labels of the 

unselected units, sw  is the vector of observed values, sv  and sv  consist of the mean 

values associated with s  and s . ssΛ  is the covariance matrix between sW  and sW  

and ssΛ  is the covariance matrix of sW . The best unbiased predictor (BUP) is 

equivalent with the BLUP under the Gaussian model. 

 In order to construct the ratio for the efficiency we simulated the mean-square 

prediction error. The simulation was proceed by producing K  realizations of the 

model and corresponding design and calculating the  
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 2 2

1

1ˆ ˆ( ) ( )
K

j j

j

E T T T T
K =

− = −∑ ) 

where jT  and ˆ
jT  are the true and the predicted population total of the j th−  

realization. 

 Chang-Tai Chao considers for the Gaussian model two sampling situations: the 

regularly and the randomly distributed possible sampling locations. Suppose that 

15000K = , 81N = , 3.5c = . He calculates the relative efficiency of the proposed 

designs to SRS for the previous cases and for sample sizes from 1 to 40  and shows as 

the values with plots. 

  The performance of the design 1 is often better than that of SRS in both of 

cases(regularly and randomly distributed population sites). The performance of the 

design 1 could also be worse than SRS because sometimes the design 1 gives ‘bad’ 

arrangement of sampling sites for some sample sizes. In fact, it is well known that the 

sampling units should be arranged symmetrically and evenly in the study region under 

such a correlated population with equal variance. 

 It is shown through various plots given in this work that the performance of the 

design 2 is in general better than SRS in both cases. Although, design 2 does not 

perform as well in the case where the population sites are randomly distributed. 

 We conclude that both designs have no certain behaviour and are comparable 

with the SRS design, a design that is not proposed for its efficiency. A possible 

explanation can be drawn from the fact that the way both designs were obtained did 

not require any optimal properties of the resulting design. The underlying method was 

rather intuitive intending to produce an easy to implement solution. 

 If we make a comparison between design 1 and 2 we see that almost always 

design 2 is better and for regularly and for randomly distributed population sites. 

 
 
 
 
 
 
 
 
 

CC BY: Attribution alone 4.0

https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.26219/heal.aueb.5554



79 

 

CHAPTER 

COMPARISON BETWEEN OPTIMAL DESIGNS 

Introduction 

Closing up this review study on superpopulation approach in sampling we 

proceed with a short comparison study between the optimal sampling designs that 

have been presented in the previous chapters. The comparison study is based on the 

efficiency of these sampling designs. 

In practice, not always the best design or the best estimator is used. It is 

important to know, at least, how far is the result we are going to use from the optimal. 

The aim of this comparison study is to assess the efficiency of the available 

methodologies and also provide with a relative measure of “distance” of each method 

with the optimal one. 

Initially, we suppose that we have an autocorrelated finite population with an 

integer convex autocorrelation function (in this study, ueu 1.0)( −=ρ ). The observations 

of the population are generated by the multivariate normal distribution. We compare 

the centrally located systematic design of I.Papageorgiou and K.X.Karakostas (section 

4.2) with the Design 1 of Chang-Tai-Chao (section 4.4). In this comparison, the 

optimal sampling design by R. Mukerjee and S.Sengupta (section 4.3) is not included 

because there are many practical problems. In fact this methodology, although quite 

general, can only work for small (far from realistic) sizes of n  and N . So, we focus 

our comparison study to the previous sampling designs. We select the optimal 

samples of these designs from the data and we find the prediction of the mean. Then, 

we find the mean square error of the prediction of the centrally located systematic 

design of I.Papageorgiou and K.X.Karakostas and we compare it with the mean 

square error of the simple random sampling. The study procedure is followed for 

Chang-Tai-Chao design. We study these designs for different values of sampling size 

n  ( )20,10,5 === nnn  to have a more completed idea. The population size N  is 

100 . 
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5.1. Generation of the observations 

5.1.1. Data 

The population size of this study is 100N = . The values of the observations of 

the population iX  are generated by the multivariate normal distribution ( )NMN ,, Σ , 

where Μ  is a matrix N×1  of means, Σ  is the covariance matrix NN ×  and the Ν  is 

the number of observations we generate. Without loss of generality, we suppose that 

12 =
iXσ , Ni∈∀ , where X 1( , ..., )NX X=  is the vector N×1  of the observations of 

the population. We know that  

 
jiX

ji

ji

XXCov
X

Χ

=Χ
σσ

ρ
),(

),( ,  )...,,1(, Nji ∈  (5.1) 

so,  

  ),(),( jiji XXCovXX =ρ .  (5.2) 

We assume that we have an autocorrelated finite population with an integer convex 

autocorrelation function. In this study we suppose that ueu 1.0)( −=ρ  where jiu −= . 

This function is an integer convex. Now from the relation (5.2) we can calculate the 

covariance matrix. 

 We give the covariance matrix and a vector of zeros Μ  (vector of means 

N×1 ). We simulate from the multivariate normal distribution and obtain each time 

vectors of dimension N×1 , with the observations of the population for our study. So 

the generation of the data is straightforward. 

Based on the optimal sampling designs, we select 

 { }niis ...,,1= ,  { },...,,1 Ni j ∈   '' jjii jj ≠∀≠  (5.3) 

with a fixed sample size n , where ji  is the selected position in the vector of the 

observations of all the population. 
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5.2. Application of the optimal sampling designs 

5.2.1. Description of the sampling designs 

In section 4.2 we referred to the optimal sampling design proposed by 

I.Papageorgiou and K.X.Karakostas. They develop the theory of the optimum 

sampling under Cochran’s model when the autocorrelation function is convex. They 

conclude that this is the centrally located systematic design. In section 4.4, we 

developed the idea of Chang-Tai-Chao about the optimal sampling design, where the 

selection of the sampling units under a correlated population based on the 

eigensystem of the population covariance matrix. He presents two different designs. 

In the comparison below, we select sampling units by Design 1, as we describe it in 

section 4.4. In the comparison study, the optimal sampling design proposed by 

R.Mukerjee and S.Sengupta (section 4.3) is not included. This happens due to the 

difficulty of this method for large values of population and sampling size (when the 

value 








n

N
is large). So, the application of this method becomes impossible. It 

requires extremely intensive computation and complicated procedure for this case. 

5.2.2. Centrally located systematic design (by I.Papageorgiou and 

K.X.Karakostas) 

We have seen that the optimal sample by the design proposed by I.Papageorgiou 

and K.X.Karakostas, is the systematic design with an almost symmetrical structure. 

However, we’ll apply here the more accurate centrally located systematic design. 

Firstly, we calculate the internal spacing  

 




=
n

N
h ,  (5.4) 

where [ ]⋅  stands for the integer part. 

Let  

hnNa )1(1 −−+=   

then we find the ending spacing 1−i  because  
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=
2

a
i .  (5.5) 

We have hi ,  so we have the optimal sample of this systematic design 

  1p = { }hnihii )1(...,,, −++ . (5.6) 

In the application we suppose that the population size is 100N = . We generate 

observations from the multivariate normal distribution. We take samples with sizes 

20,10,5 === nnn  from a vector N×1 of the observations. We find the mean of the 

sample vector. The mean of the design’s sample is the prediction of the mean. The 

variance of this prediction is given by the function below (Model-complete strategies 

for sampling from convex autocorrelated finite populations by I.Papageorgiou and 

K.X.Karakostas, 2001) 

 

=)ˆ(θV

2

0

2
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2( ( ))
1

( ) ( ) ( 1) ( 1) 2 ( 1 ) ( )
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=
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(5.7) 

where  
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5.2.3. Optimal sampling design based on the eigensystem (by Chang-

Tai-Chao) 

The idea of Chang-Tai-Chao about the optimal sampling design is based on the 

eigensystem of the population covariance matrix. We find at first instance the 

eigenvectors of the covariance matrix. Then we follow the steps of the Design 1: 
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 Step 1 : ji =1 , je1  = i
i

e1max   

 M 

 Step k  : jik = , kje  = ki
sii

e
∉,

max  

repeat step k  till k n= . 

So we find now the optimal sample of this sampling design 

 { }1 1 2, , ..., nq i i i= .    (5.8) 

We take the sample from the same vector N×1 with the observations. We find the 

mean of the sample vector. The mean of this design’s sample is the prediction of the 

mean of the design. Then, we do not find the variance of the prediction because we 

have not a function for it.  

5. 3. Results of the study 

5. 3.1. Numeral results 

In this section, we mention the results of the study of the application of these 

two sampling designs when the sample sizes are 15,10,5 === nnn  correspondingly. 

In the Table 5.1 we can see the prediction of the population mean (θ̂ ) for each 

sampling design when the sampling sizes are 5, 10, 15n n n= = =  correspondingly.  

 

Table 5.1.Estimator θ̂  of the sampling designs ( )20,10,5 === nnn  

 

 

 

  

  

In the Table 5.2 below, we give the mean square error of the prediction for all the 

previous cases of the sampling size. We also give the mean square error of the 

prediction for the simple random sampling ( nfS /)1(2 − ).  We can see that the mean 

square error of the centrally located systematic design is smaller than this of the 

sampling design\sampling size 5=n  10=n  20=n  

Systematic centrally located 0.0682 0.1902 0.1972 

Eigensystem's design 0.5741 0.4474 0.2646 
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simple random sampling for all the sampling sizes. This is expected as the above 

mentioned result has been obtained as we have seen in chapter 4, based on the 

optimality of MSE criterion. 

 

Table 5.2.Mean square error of the prediction for the systematic design and the 

eigensystem’s design 

 

 

 

 

 

5.3.2. Conclusion of the comparison 

 We mentioned previously the numerical results of the comparison study between 

the centrally located systematic design (by I.Papageorgiou and K.X.Karakostas) and 

the sampling design based on the eigensystem (by Chang-Tai-Chao).  

We can compare these designs with the relative efficiency of the one design to 

another one. Here we’ll define the relative efficiency as the ratio of the mean-square 

prediction error obtained with the sampling design based on the eigensystem to that 

obtained of the centrally located systematic design. A value greater than 1 indicates 

that this kind of systematic design is more efficient. 

We can see that for all the cases of the sampling sizes, the relative efficiency is 

greater than 1. So, the design proposed by I.Papageorgiou and K.X.Karakostas is 

more efficient than the sampling design by Chang-Tai-Chao. 

 

 

 
 
 
 
 
 
 

sampling design\sampling size 5=n  10=n  20=n  

Systematic centrally located 0.0381 0.0135 0.0037 

Eigensystem’s design 0.19 0.09 0.04 
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APPENDIX 

 A1. This program produces an integer convex autocorrelation function. 

Specifically this function is ueu 1.0)( −=ρ , where u  is jiu −= . We suppose that 

X 1( , ..., )NX X=  and )...,,1(, Nji ∈ . 

 
function [sigma] = convexcovariance(k,N) 

  

% k is a coefficient controlling the exponential function. 

% N is the population size. 

  

C = []; 

for m = 1:1:N 

    C = [C;m*ones(1,N)]; 

end; 

P = C - C'; 

P = abs(P); 

P = k * P; 

sigma = exp(P); 

 
 

 A2. Here values of the observations of the population iX  are generated by the 

multivariate normal distribution ( )NMN ,, Σ , where Μ  is a matrix N×1  of means, 

Σ  is the covariance matrix NN ×  and the Ν  is the number of observations we 

generate. 

 
function [Y] = mvnormrnd(mu,sigma,n) 

  

% MVNORMRND - Multivariate Normal - Random Number Generation % 

Copyright (c) 1998, Harvard University. Full copyright in the file Copyright % % Y = 

mvnormrnd(mu, sigma, n) % 
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%   mu = p by 1 mean column vector or n by p matrix of means 

%   sigma = covariance matrix 

%   n = number of observations to generate 

% 

%   Y = an n by p matrix of row vectors with mean mu and covariance sigma 

% 

% Note: works slightly different from Matlab builtin MVNRND. 

% 

%   if mu is a column vector, n rows will be returned, all with mean mu 

% 

%   if mu is a matrix, a matrix of the same size will be returned with 

%   row Y(i,:) having mean mu(i,:) . 

% 

% See also: MVNORMPDF, MVNORMLPR 

  

[d1,d2] = size(mu); 

S = chol(sigma)'; 

if d2==1, 

% then mu is a column vector 

X = normrnd(0,1,n,d1); 

Y = X*S' + ones(n,1)*mu' ; 

else 

X = normrnd(0,1,d1,d2); 

Y = X*S' + mu ; 

end 

 

 A3. This function firstly gives the eigenvectors of the covariance matrix. Then 

this program produces the optimal sample of the sampling design 1 of Chang-Tai-

Chao. 
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function [p] = eigensystemsample(sigma,n) 

  

[E,D] = eig(sigma); 

E = abs(E); 

[M,I] = max(E'); 

p = I([1:1:n]); 

A4. This function produces the optimal sample of the systematic centrally located 

design by I.Papageorgiou and K.X.Karakostas. 

 
function [p] = systematicsample(n,N) 

  

h = floor(N/n); 

a = (N+1) - ((n-1)*h); 

i = floor(a/2); 

p = i:h:N; 

 

 A5. This function gives the variance of the estimator of the sampling design 1 

by Chang-Tai-Chao. 

. 
 

function [Vi] = V(i,N) 

  

Nsquare = N*N; 

A = [(i-1):-1:1]; 

K1 = -0.1*[1:1:(i-1)]; 

B = exp(K1); 

K2 = -0.1*[0:1:(i-1)]; 

C = exp(K2); 

  

Vi = i + (2 * (A*B')) - (sum(C)^2); 

Vi = Vi / Nsquare; 
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 A6. The program below calculates the variance of the estimator of the 
systematic centrally located design (I.Papageorgiou and K.X. Karakostas 
(2001).Model-complete strategies from convex autocorrelated finite populations, 
Journal of Statistics Planning and Inference (p.83) ). 
 
 
 
function [Fi] = F(i,n,N,h) 

  

Nsquare = N*N; 

A = [h:-1:1]; 

K1 = -0.1*[1:1:h]; 

B = exp(K1); 

K2 = -0.1*[0:1:h]; 

C = exp(K2); 

  

S = sum(C)^2; 

S = (2 * S) / (1 + exp(-0.1*h)); 

  

Fi = (2 * (A*B')) - S; 

Fi = (h + 1) + Fi; 

Fi = (n - 1) * Fi; 

Fi = (2 * V(i,N)) + Fi; 

Fi = Fi / Nsquare; 

 
 
 A7. Here I calculate the mean and the variance of the optimal samples for both 
of designs by Chang-Tai-Chao and by I.Papageorgiou and K.X.Karakostas. ( 100N = , 

1 2 35, 10, 20n n n= = = ) 

 
 
N = 100; 

M = 1; 

n1 = 5; 

n2 = 10; 
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n3 = 20; 

  

h1 = floor(N/n1); 

h2 = floor(N/n2); 

h3 = floor(N/n3); 

  

k = -0.1; 

  

sigma = convexcovariance(k,N); 

mu = zeros(M,N); 

X = mvnormrnd(mu,sigma,N); 

p1 = eigensystemsample(sigma,n1); 

p2 = eigensystemsample(sigma,n2); 

p3 = eigensystemsample(sigma,n3); 

  

q1 = systematicsample(n1,N); 

q2 = systematicsample(n2,N); 

q3 = systematicsample(n3,N); 

  

i1 = q1(1); 

i2 = q2(1); 

i3 = q3(1); 

  

Y1 = X(:,p1); 

Y2 = X(:,p2); 

Y3 = X(:,p3); 

  

Z1 = X(:,q1); 

Z2 = X(:,q2); 

Z3 = X(:,q3); 

  

meanY1 = mean(Y1'); 

meanY2 = mean(Y2'); 

meanY3 = mean(Y3'); 
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meanZ1 = mean(Z1'); 

meanZ2 = mean(Z2'); 

meanZ3 = mean(Z3'); 

  

Vi1 = V(i1,N); 

Vi2 = V(i2,N); 

Vi3 = V(i3,N); 

  

Fi1 = F(i1,n1,N,h1); 

Fi2 = F(i2,n2,N,h2); 

Fi3 = F(i3,n3,N,h3); 
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