Πλοήγηση ανά Συγγραφέα "Pinotsi, Dimitra"
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω
Τώρα δείχνει 1 - 1 από 1
- Αποτελέσματα ανά σελίδα
- Επιλογές ταξινόμησης
Τεκμήριο Synchronized and gated queueing models(2022-11-30) Πινότση, Δήμητρα; Pinotsi, Dimitra; Athens University of Economics and Business, Department of Statistics; Pavlopoulos, Charalampos; Kyriakidis, Epaminondas; Besbeas, Panagiotis; Livada, Alexandra; Zhao, Yiqiang Q.; He, Qi-Ming; Zazanis, MichaelΗ διατριβή πραγματεύεται ζητήματα σχετιζόμενα με θεωρία ουρών που αφορούν σε συστήματα με θύρες με άπειρο πλήθος εξυπηρετούντων καθώς και συστήματα με συγχρονισμένες αφίξεις. Τα συστήματα με θύρες με άπειρο πλήθος εξυπηρετητών έχουν εφαρμογές σε βιομηχανικές διαδικασίες καθώς και σε τηλεπικοινωνιακά συστήματα. Λόγω του μηχανισμού της θύρας δεν είναι θεμιτό να γίνει μια ακριβής ανάλυση και γι’ αυτό εφαρμόζονται αναλυτικές μέθοδοι (ή προσομοίωση). Το γεγονός του άπειρου πλήθους των εξυπηρετούντων και η παρουσία του μηχανισμού θύρας κάνει το ερώτημα της ευστάθειας του συστήματος ενδιαφέρον ζήτημα.Η ευστάθεια της ουράς M/G/∞ με πύλη, διερευνάται με τη χρήση ενός κριτηρίου ολίσθησης των Foster–Lyapunov βάσει του οποίου αποδεικνύεται ότι το να είναι πεπερασμένη η πρώτη ροπή της κατανομής των χρόνων εξυπηρέτησης είναι ικανή και αναγκαία συνθήκη για τη θετική επανάληψη του συστήματος.Ένα σύστημα που αποτελείται από m ανεξάρτητους, παράλληλους και εκθετικούς εξυπηρετούντες, με ανάλογη ντετερμινιστική εισροή διερευνήθηκε ως μια τροποποίηση του Flatto-Hahn-Wright μοντέλου της θεωρίας ουρών, το οποίο αντίθετα με το αρχικό εξελίσσεται σε πιο εύκολα διαχειρίσιμο αναφορικά με την ανάλυσή του. Εστιάζουμε στην ευσταθή κατανομή του χρόνου που χρειάζονται οι πελάτες, η οποία επιτυγχάνεται με τη χρήση μιας Μαρκοβιανής προσέγγισης εισαγωγής σε συνδυασμό τον τύπο αντιστροφής.Τέλος, πραγματοποιήθηκε μια λεπτομερής ανάλυση της περιόδου αιχμής ενός συστήματος M/G/∞. Αναλύθηκε η διάρκεια του σταδίου μιας Μαρκοβιανής αλυσίδας παρέχοντας πλήθος λύσεων για την περίπτωση που έχουμε μικρή κίνηση. Και στις δύο περιπτώσεις τα τελικά αποτελέσματα εξαρτώνται από τη λύση άπειρων γραμμικών συστημάτων
