Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Existence and uniqueness of a stationary and ergodic solution to stochastic recurrence equations via Matkowski’s FPT

dc.aueb.notesThis research was funded by the Research Centre of the Athens Univer-sity of Economics and Business, in the framework of ”Research Funding at AUEB for Excellence and Extroversion”.
dc.creatorArvanitis, Steliosel
dc.date.accessioned2025-03-26T19:39:29Z
dc.date.available2025-03-26T19:39:29Z
dc.date.issued03/13/2017
dc.date.submitted2017-03-13 16:09:56
dc.description.abstractWe establish the existence of a unique stationary and ergodic solution for systems of stochastic recurrence equations defined by stochastic self-maps on Polish metric spaces based on the fixedpoint theorem of Matkowski. The results can be useful in cases where the stochastic Lipschitz co-efficients implied by the currently used method either do not exist, or lead to the imposition ofunecessarily strong conditions for the derivation of the solution.en
dc.embargo.expire2017-03-13 16:09:56
dc.embargo.ruleOpen access
dc.format.extent6 pages
dc.identifierhttp://www.pyxida.aueb.gr/index.php?op=view_object&object_id=5297
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/6519
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectstochastic recurrence equationsel
dc.subjectstationarityel
dc.subjectergodicityel
dc.subjectMatkowski’s FPTel
dc.subjectcomparison functionel
dc.titleExistence and uniqueness of a stationary and ergodic solution to stochastic recurrence equations via Matkowski’s FPTel
dc.typeText
dc.typeNonPeerReviewed

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Arvanitis_2017_w.pdf
Μέγεθος:
540.8 KB
Μορφότυπο:
Adobe Portable Document Format