Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Dantzig selector in linear models in n<p problems

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Statisticsel
dc.contributor.thesisadvisorVasdekis, Vassilisel
dc.creatorGeorgopoulos, Nicolaosel
dc.date.accessioned2025-03-26T19:44:53Z
dc.date.available2025-03-26T19:44:53Z
dc.date.issued16-02-2017
dc.description.abstractIn many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. In radiology and biomedical imaging, for instance, one is typically able to collect far fewer measurements about an image of interest than the unknown number of pixels. Examples in functional MRI and tomography all come to mind. High dimensional data frequently arise in genomics. Gene expression studies are a typical example: a relatively low number of observations (in the tens) is available, while the total number of genes assayed (and considered as possible regressors) is easily in the thousands. Other examples in statistical signal processing and nonparametric estimation include the recovery of a continuous-time curve or surface from a finite number of noisy samples.el
dc.format.extent97 p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/7362
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectThe Dantzig selectorel
dc.subjectLasso methodsel
dc.subjectSimulationel
dc.titleDantzig selector in linear models in n<p problemsel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Georgopoulos_2017.pdf
Μέγεθος:
4.77 MB
Μορφότυπο:
Adobe Portable Document Format