Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Bayesian variable selection and shrinkage using Lasso methods

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Statisticsel
dc.contributor.thesisadvisorNtzoufras, Ioannisel
dc.creatorKatsarps, Michailel
dc.date.accessioned2025-03-26T19:44:52Z
dc.date.available2025-03-26T19:44:52Z
dc.date.created29-04-2016
dc.description.abstractLeast squares method is the usual way of treating a multiple regression problem. But not all available predictors are meaningful for the response variable. Poor performance in terms of prediction accuracy and interpretation are problems arising when overfitting the data. Variable selection methods improve interpretation and prediction by producing models of lower dimension, while shrinkage techniques reduce the variance of predicted values by shrinking predictors’ coefficients towards zero.LASSO performs both shrinkage and variable selection by shrinking some coefficients towards zero and setting others exactly equal to zero. A tuning parameter is involved, which controls the shrinkage procedure while k-fold Cross Validation is used to specify its optimal value. Additionally, the lasso estimates can be defined as a Bayesian posterior mode when regression coefficients are placed under independent double-exponential (Laplace) priors.el
dc.format.extent108 p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/7360
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectLasso methodsel
dc.subjectBayesian modelel
dc.subjectVariablesel
dc.titleBayesian variable selection and shrinkage using Lasso methodsen
dc.title.alternativeΜπεϋζιανά μοντέλα επιλογής και συρρίκνωσης μεταβλητών με τη χρήση μεθόδων lassoel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Katsaros_2016.pdf
Μέγεθος:
2.99 MB
Μορφότυπο:
Adobe Portable Document Format