Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Particle filters

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Statisticsen
dc.contributor.thesisadvisorDellaportas, Petrosen
dc.creatorPierroutsakos, Konstantinos X.en
dc.date.accessioned2025-03-26T19:33:36Z
dc.date.available2025-03-26T19:33:36Z
dc.date.issued04-2013
dc.description.abstractSubject of this master thesis is the presentation of a methodology, called Particle filters, a class of Sequential Monte Carlo (SMC) methods used to sample sequentially from a sequence of high-dimensional and complex probability distributions. A cloud of particles evolves over time as new observations become available to approximate the posterior distribution of the state variables. From when first introduced from Gordon (1993)[17] , it has been used in a lot of applications that include signal and image processing, predicting economical data, tracking the position of aircraft or cars. In the context of this thesis, the algorithm of particle filters is illustrated, as well as a relatively new technique introduced by Christophe Andrieu, Arnaud Doucet, Roman Holenstein (2010)[8], called Particle Markov Chain Monte Carlo (PMCMC) which combines the MCMC with the SMC methods. PMCMC is used when the state-space model depends on unknown parameters in a case where standard particle filters fail. The main objective of this thesis is to illustrate the basics of those methodologies in theoretical framework together with a simple example.en
dc.format.extent57p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/5380
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectParticle filtersen
dc.subjectSequential Monte Carlo (SMC)en
dc.subjectMarkov Chain Monte Carlo (MCMC)en
dc.subjectParticle Markov Chain Monte Carlo (PMCMC)en
dc.titleParticle filtersen
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Pierroutsakos_2013.pdf
Μέγεθος:
576.52 KB
Μορφότυπο:
Adobe Portable Document Format