Λογότυπο αποθετηρίου
 

Reprodusing Kernel Hilbert spaces and their applications in probability and statistics

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Statisticsel
dc.contributor.thesisadvisorGiannakopoulos, A.el
dc.creatorDristellas, Demetriosel
dc.date.accessioned2025-03-26T19:45:14Z
dc.date.available2025-03-26T19:45:14Z
dc.date.issued22-07-2015
dc.description.abstractIn a large variety of problems in Statistics and Stochastic processes, the random variables which are used do not present finite dimensionality, in contrary their dimension is infinite. On the other hand, the observations of those random variables are actually finitedimensional approximations of corresponding infinite dimensional subjects. Reproducing Kernel Hilbert Spaces (RKHS) are a useful theoretical and practical tool which provides us a series useful representations even for non-linear data. This work will be an introduction to the theory of RKHS in the context of the smoothness of a data set.el
dc.format.extent96 σ.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/7525
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectRandom variablesel
dc.subjectKernel Hilbert spaces (RKHS)el
dc.subjectNon-linear modelel
dc.subjectProbabilityel
dc.titleReprodusing Kernel Hilbert spaces and their applications in probability and statisticsel
dc.title.alternativeΧώροι Hilbert με αναπαραγωγικό πυρήνα και εφαρμογές τους στην στατιστική και στις πιθανότητεςel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Dristellas_2015.pdf
Μέγεθος:
1.19 MB
Μορφότυπο:
Adobe Portable Document Format