Λογότυπο αποθετηρίου
 

Imputation methods based on principal component analysis

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Statisticsel
dc.contributor.thesisadvisorPapageorgiou, Iouliael
dc.creatorSiskas, Christosel
dc.date.accessioned2016-09-30*
dc.date.available2025-03-26T19:44:51Z
dc.date.issued2016-09-30*
dc.date.issuedoriginal30-09-2016*
dc.description.abstractPrincipal Component Analysis is the oldest and most famous technique of Multivariate Analysis and can be used as a tool for researchers to deal with missingness in datasets. The aim of this thesis is the description, the analysis and the comparison of the techniques that belong in the category of Principal Component Analysis. All these available techniques are presented with respect to their theoretical framework and then a comparison of these methods in different percentages of missingness and for different types of datasets (simulated and real) follows in order to see which method responds better depending on the case and which is totally the most reliable.el
dc.format.extent80 p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/7341
dc.identifier.urihttps://doi.org/10.26219/heal.aueb.6410
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectPrincipal Components Analysisel
dc.subjectMultivariate analysisel
dc.subjectFixed effect modelel
dc.subjectRandom effect modelel
dc.titleImputation methods based on principal component analysisel
dc.title.alternativeΜέθοδοι που χρησιμοποιούνται για την αναπλήρωση ελλειπουσών τιμών και βασίζονται στην ανάλυση κύριων συνιστωσώνel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Siskas_2016.pdf
Μέγεθος:
1.88 MB
Μορφότυπο:
Adobe Portable Document Format