Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

An econometric analysis of high-frequency financial data

Μικρογραφία εικόνας

Ημερομηνία

12/09/2021

Συγγραφείς

Lamprinakou, Fiori
Λαμπρινάκου, Φιόρη

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Επιβλέπων

Διαθέσιμο από

2022-01-19 21:22:59

Περίληψη

We present and compare observation driven and parameter driven models for predictinginteger price changes of high-frequency financial data. We explore Bayesian inferencevia Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) for the observationdriven model activity-direction-size (ADS), introduced by Rydberg and Shephard [1998a,2003]. We extend the ADS model by proposing a parameter driven model and use a Bernoulligeneralized linear model (GLM) with a latent process in the mean. We propose a new decompositionmodel that uses trade intervals and is applied on data that allow three possible tickmovements: one tick up price change, one tick down price change, or no price change. Wemodel each component sequentially using a Binomial generalized linear autoregressive movingaverage (GLARMA) model, as well as a GLM with a latent process in the mean. We perform asimulation study to investigate the effectiveness of the proposed parameter driven models usingdifferent algorithms within a Bayesian framework. We illustrate the analysis by modelling thetransaction-by-transaction data of of E-mini Standard and Poor’s (S&P) 500 index futures contracttraded on the Chicago Mercantile Exchange’s Globex platformbetween May 16th 2011 andMay 24th 2011. In order to assess the predictive performance, we compare the mean square error(MSE) and mean absolute error (MAE) criterion, as well as four scalar performance measures,namely, accuracy, sensitivity, precision and specificity derived from the confusion matrix.
Παρουσιάζουμε και συγκρίνουμε μοντέλα βασισμένα στην παρατήρηση (observation driven) και στις παραμέτρους (parameter driven) για να προβλέψουμε τις διακριτές αλλαγές των τιμών οικονομικών δεδομένων υψηλής συχνότητας. Η ανάλυση γίνεται με Μπεϋζιανή προσέγγιση με Μαρκοβιανές αλυσίδες Monte Carlo (MC) και ακολουθιακές μεθόδους MC για το observation driven μοντέλο ADS [Rydberg and Shephard,1998a, 2003]. Επεκτείνουμε το ADS μοντέλο ορίζοντας ένα γενικευµένο γραµµικό μοντέλο (GLM) των οποίων τα δεδομένα απόκρισης προέρχονται από την Bernoulli κατανομή και διέπονται από μία μη παρατηρήσιμη στοχαστική διαδικασία. Προτείνουμε ένα νέο μοντέλο αποσύνθεσης που χρησιμοποιεί διαστήματα εμπορικών συναλλαγών και εφαρμόζεται σε δεδομένα που μεταξύ δύο συναλλαγών η τιμή μπορεί να κινηθεί: ένα tick (η μικρότερη μη μηδενική αλλαγή της τιμής) επάνω (ή κάτω) ή καθόλου. Μοντελοποιούμε κάθε παράγοντα της τιμής διαδοχικά χρησιμοποιώντας ένα διωνυμικό μοντέλο GLARMA, και ένα GLM μοντέλο με μία λανθάνουσα διαδικασία. Πραγματοποιούμε προσομοίωσεις για να διερευνήσουμε την αποτελεσματικότητα των προτεινόμενων parameter driven μοντέλων χρησιμοποιώντας διάφορους αλγόριθμους μέσα σε ένα Μπεϋζιανό πλαίσιο. Αναλύουμε τα δεδομένα ES από την πλατφόρμα Globex του Chicago Mercantile Exchange μεταξύ 16 και 24 Μαΐου 2011. Για την προβλεπτική ικανότητα του μοντέλου, συγκρίνουμε το μέσο τετραγωνικό και απόλυτο σφάλμα (MSE, MAE), καθώς και τέσσερα μέτρα εκτίμησης: accuracy, recall, precision και specificity του πίνακα σύγχυσης (confusion matrix).

Περιγραφή

Λέξεις-κλειδιά

HFD, Price change process, Latent process, MCMC, Prediction, Δεδομένα υψηλής συχνότητας, Διαδικασία αλλαγής τιμής, Λανθάνουσα διαδικασία, Μαρκοβιανές αλυσίδες Monte Carlo, Πρόβλεψη

Παραπομπή

Άδεια Creative Commons