Διδακτορικές διατριβές
Μόνιμο URI για αυτήν τη συλλογήhttps://pyxida.aueb.gr/handle/123456789/14
Περιήγηση
Πλοήγηση Διδακτορικές διατριβές ανά Συγγραφέα "Georgiou, Kyriakos"
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω
Τώρα δείχνει 1 - 1 από 1
- Αποτελέσματα ανά σελίδα
- Επιλογές ταξινόμησης
Τεκμήριο Discrete, continuous and machine learning models with applications in credit risk(13-09-2023) Γεωργίου, Κυριάκος; Georgiou, Kyriakos; Athens University of Economics and Business, Department of Statistics; Xanthopoulos, Stylianos; Tsekrekos, Andrianos; Zazanis, Michael; Psarakis, Stelios; Siettos, Konstantinos; Weber, Gerhard-Wilhelm; Yannacopoulos, AthanasiosΗ μοντελοποίηση πιστωτικού κινδύνου είναι ένας ταχέως αναπτυσσόμενος και δυναμικός κλάδος των μαθηματικών της χρηματοοικονομικής, με σημαντικές εφαρμογές, όπως έχει αποδειχθεί και ιστορικά. Συγκεκριμένα, η τελευταία οικονομική κρίση κατέστη σαφές ότι τα μοντέλα εκτίμησης πιστωτικού κινδύνου θα πρέπει να χαρακτηρίζονται από μαθηματική ακρίβεια και σαφήνεια. Για τον λόγο αυτόν, τα πρόσφατα Διεθνή Πρότυπα Χρηματοοικονομικής Αναφοράς (ΔΠΧΑ) 9 έχουν εισάγει το πλαίσιο της πρόβλεψης στην εκτίμηση του πιστωτικού κινδύνου, αυξάνοντας μ’ αυτόν τον τρόπο και την ανάγκη για αυστηρή μαθηματική μοντελοποίηση. Σκοπός της παρούσας διδακτορικής διατριβής είναι να αναπτύξει και να εξερευνήσει τα μαθηματικά εργαλεία και μοντέλα που προκύπτουν απ’ αυτήν την ανάγκη, με γνώμονα συγκεκριμένα ανοιχτά προβλήματα που δημιουργούνται με τα νέα πρότυπα, καθώς και να εισάγει ένα πλαίσιο μαθηματικής μοντελοποιήσης που μπορεί να εκμεταλλευτούν οι επαγγελματίες του κλάδου.Η έρευνα ξεκινά με διακριτά μοντέλα, και συγκεκριμένα αλυσίδες Markov, που είναι βαθιά καθιερωμένα εργαλεία στον χώρο του πιστωτικού κινδύνου, αναπτύσσοντας ένα αναγκαίο μαθηματικό πλαίσιο για την αναφορά των πιστωτικών αξιολογήσεων που εξασφαλίζει τη συμμόρφωση με το ΔΠΧΑ. Στην συνέχεια, χρησιμοποιούμε στοχαστικά μοντέλα σε συνεχή χρόνο για την εκτίμηση πιθανοτήτων αθέτησης, αλλά και μελλοντικών πιστωτικών ζημιών. Πιο ειδικά, εξετάζουμε μια οικογένεια μοντέλων που εισάγουν και κρυφές μεταβλητές οι οποίες επηρεάζουν την εξέλιξη ενός πιστωτικού προϊόντος (π.χ., μακροοικονομικές μεταβλητές), και χρησιμοποιούμε τεχνικές βασισμένες σε ολοκληρωτικές και μερικές ολοκληρο-διαφορικές εξισώσεις για να περιγράψουμε και να αποδείξουμε σημαντικές μαθηματικές ιδιότητες των συσχετιζομένων πιθανοτήτων αθέτησης. Για να συνεισφέρουμε στην εφαρμοσιμότητα των προαναφερθέντων μεθοδολογιών, αναπτύσσουμε και εξετάσουμε αριθμητικές μεθόδους για την εκτίμηση των πιθανοτήτων αθέτησης. Χρησιμοποιούμε τις γνωστές τεχνικές διακριτοποίησης στις μερικές ολοκληρο-διαφορικές εξισώσεις που προκύπτουν κάτω από ένα εύρος μοντέλων, δείχοντας την ποικιλία των προβλημάτων που μπορούν να επιλυθούν με αυτές τις τεχνικές. Τέλος, εμπνευσμένοι από σύγχρονη έρευνα στον τομέα της μηχανικής εκμάθησης, θεωρούμε τρόπους με τους οποίους αυτή, και συγκεκριμένα τα μοντέλα νευρωνικών δικτύων (deep neural networks – DNN), μπορούν να χρησιμοποιηθούν για την εκτίμηση των πιθανοτήτων αθέτησης, λύνοντας τις αντίστοιχες εξισώσεις. Ολοκληρώνοντας, εξετάζουμε θεωρητικές και πρακτικές πτυχές αυτών των μοντέλων που πρέπει να λαμβάνονται υπόψιν στην εφαρμογή των μοντέλων αυτών και τη σύγκρισή τους καθιερωμένες αριθμητικές μεθόδους.