Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Marketing analytics and operations analytics: the case of customer segmentation, market basket analysis and demand forecasting

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Management Science and Technologyen
dc.contributor.opponentKarlis, Dimitriosen
dc.contributor.opponentLouridas, Panagiotisen
dc.contributor.thesisadvisorChatziantoniou, Damianosen
dc.creatorΒιώνη, Κωνσταντίναel
dc.creatorVioni, Konstantinaen
dc.date.accessioned2025-03-26T19:11:26Z
dc.date.available2025-03-26T19:11:26Z
dc.date.issued11-08-2024
dc.date.submitted2024-10-10 22:37:16
dc.description.abstractΗ παρούσα διπλωματική εργασία πραγματοποιείται στο πλαίσιο του Μεταπτυχιακού Προγράμματος στην Επιχειρηματική Αναλυτική, με στόχο τη διερεύνηση των τομέων της Αναλυτικής Μάρκετινγκ και της Αναλυτικής Επιχειρησιακών Λειτουργιών, εστιάζοντας στον αντίκτυπό τους στις επιχειρήσεις.Στο πρώτο μέρος, θα γίνει ανασκόπηση της σχετικής βιβλιογραφίας σχετικά με τα Μεγάλα Δεδομένα (Big Data), την Επιχειρηματική Ευφυΐα (Business Intelligence), την Τεχνητή Νοημοσύνη (Artificial Intelligence), και τις αναλυτικές μεθόδους για ομαδοποίηση, κανόνες συσχέτισης, και πρόβλεψη ζήτησης. Στη φάση της εμπειρικής έρευνας, θα αναλυθεί ένα σύνολο δεδομένων από ένα κατάστημα λιανικής, εφαρμόζοντας την ανάλυση RFM (Recency, Frequency, Monetary) για την τμηματοποίηση των πελατών, εντοπίζοντας μοτίβα συναλλαγών μέσω της Ανάλυσης Καλαθιού Αγορών (Market Basket Analysis), και προβλέποντας τη μελλοντική ζήτηση μέσω της πρόβλεψης.Τα ευρήματα της παρούσας έρευνας αναμένεται να αναδείξουν τη σημασία των προηγμένων τεχνικών αναλυτικής για τη διαμόρφωση της επιχειρηματικής επιτυχίας. Με την ανάλυση της συμπεριφοράς των πελατών, οι επιχειρήσεις μπορούν να υλοποιήσουν στοχευμένες στρατηγικές μάρκετινγκ, να βελτιώσουν την ικανοποίηση των πελατών και να κατανείμουν τους πόρους πιο αποτελεσματικά. Οι πρακτικές εφαρμογές αυτής της έρευνας θα επιδείξουν τα πιθανά οφέλη της αναλυτικής στις επιχειρηματικές λειτουργίες.Για την ολοκλήρωση της μελέτης αυτής, χρησιμοποιήθηκε η Python για τον καθαρισμό των δεδομένων, το SAS Studio για την εφαρμογή τεχνικών εξόρυξης δεδομένων, όπως η τμηματοποίηση πελατών και η ανάλυση καλαθιού αγορών, το SAS Forecast Studio για την πρόβλεψη μελλοντικής ζήτησης, και το Power BI για τους σκοπούς της οπτικοποίησης.el
dc.description.abstractThis thesis is conducted as part of the Master’s Program in Business Analytics aiming to investigate the areas of Marketing Analytics and Operation Analytics, focusing on their impact on businesses. In the first part will be reviewed relevant literature on Big Data, Business Intelligence, Artificial Intelligence, and analytical methods for clustering, association rules, and demand forecasting. In the empirical phase, it will be analyzed a retail superstore dataset implementing customer segmentation through RFM (Recency, Frequency, Monetary) Analysis, identifying transactional patterns through Market Basket Analysis, and predicting future demand though forecasting. The findings of this research are expected to highlight the importance of advanced analytics techniques in shaping business success. By identifying customer behaviour, businesses can enable targeted marketing strategies, enhance customer satisfaction, and allocate resources more efficiently. These practical research applications will showcase the potential benefits of analytics to business operations. For the fulfillment of this study it was used Python to clean the data, SAS Studio for applying data mining techniques like customer segmentation and market basket analysis, SAS Forecast Studio for predicting future demand, and Power BI for visualization purposes.en
dc.embargo.expire2024-10-10 22:37:16
dc.embargo.ruleOpen access
dc.format.extent97p.
dc.identifierhttp://www.pyxida.aueb.gr/index.php?op=view_object&object_id=11537
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/1843
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectΑναλυτική μάρκετινγκel
dc.subjectΑναλυτική επιχειρησιακών λειτουργιώνel
dc.subjectΑνάλυση RFMel
dc.subjectΑνάλυση καλαθιού αγοράςel
dc.subjectΠρόβλεψη ζήτησηςel
dc.subjectMarketing analyticsen
dc.subjectOperation analyticsen
dc.subjectRFM Analysisen
dc.subjectMarket basket analysisen
dc.subjectDemand forecastingen
dc.titleMarketing analytics and operations analytics: the case of customer segmentation, market basket analysis and demand forecastingen
dc.title.alternativeΑναλυτική μάρκετινγκ και αναλυτική επιχειρησιακών λειτουργιών: η περίπτωση της τμηματοποίησης πελατών, της ανάλυσης καλαθιού αγοράς και της πρόβλεψης ζήτησηςel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Vioni_2024.pdf
Μέγεθος:
4.56 MB
Μορφότυπο:
Adobe Portable Document Format