Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Machine learning application on loan approval prediction

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Management Science and Technologyen
dc.contributor.opponentChatziantoniou, Damianosen
dc.contributor.opponentAndroutsopoulos, Konstantinosen
dc.contributor.thesisadvisorZachariadis, Emmanouilen
dc.creatorΤζίμας, Φερδινάνδοςel
dc.creatorTzimas, Ferdinandosen
dc.date.accessioned2025-03-26T19:08:01Z
dc.date.available2025-03-26T19:08:01Z
dc.date.issued29-01-2024
dc.date.submitted2024-01-25 20:12:15
dc.description.abstractΣε αυτή τη μελέτη, αλγόριθμοι μηχανικής μάθησης χρησιμοποιούνται για την εξομοίωση της παραδοσιακής διαδικασίας έγκρισης αιτήσεων δανείων από τραπεζικά ιδρύματα. Τα αποτελέσματα της μελέτης μπορούν να χρησιμοποιηθούν από τραπεζικά ιδρύματα για την αυτοματοποίηση και τον εκσυγχρονισμό της διαδικασίας λήψης αποφάσεων ως προς την έγκριση δανείων. Η μελέτη επικεντρώνεται σε δάνεια που ιδιώτες έχουν τον ρόλο του δανειολήπτη και τραπεζικά ίδρυματα το ρόλο του δανειστή. Δέκα δημοφιλείς αλγόριθμοι μηχανικής μάθησης εκπαιδεύονται σε ιστορικά δεδομένα παλαιών αιτήσεων δανείων για να προβλέψουν αν μια αίτηση δανείου έχει γίνει δεκτή. Η αποφυγή λανθασμένης έγκρισης αιτήσεων είναι ο κύριος δείκτης απόδοσης των μοντέλων που δοκιμάστηκαν λόγω του αντίκτυπου που έχει ένα απλήρωτο δάνειο ως προς τον δανειστή, τον δανειολήπτη και το οικονομικό οικοσύστημα. Τα δέντρα αποφάσεων, το XGBoost και το ADAboost είναι οι πιο αποτελεσματικοί και αποδοτικοί αλγόριθμοι όταν συμπληρώνονται με Gridsearch για την βελτιστοποίηση των υπερπαραμέτρων και το τις τεχνικές παραγωγής σύνθετων δεδομένων SVM SMOTE ή Borderline SMOTE για την εξάλειψη οποιασδήποτε ανισορροπίας ως προς την εκπροσώπηση των δύο πιθανών αποτελεσμάτων στα δεδομένω εκπαίδευσης του μοντέλου.el
dc.description.abstractIn this study, machine learning algorithms are utilized for emulation of the traditional loan application approval process followed by banking institutions. The results of the study can be utilized by banking institutions for automating and streamlining to a higher degree the decision-making process around loan application approval. This study focuses on loans assuming an individual as the borrower and a banking institution as the lender. Ten popular binary classification Machine learning algorithms are trained on a dataset of past loan applications in order to predict whether a loan application has been accepted. Recall of rejected applications is the primary performance indicator due to the impact that a loan going into default has on the lender, the borrower and the economic ecosystem. Decision trees, XGBoost and ADAboost are the most effective and efficient algorithms when supplemented with Gridsearch for hyperparameter optimization and SVM SMOTE or Borderline SMOTE for elimination of any class imbalance in the target variable’s representation on the training dataset. According to feature importance information extracted by the models, Credit score has the highest positive impact on the probability of acceptance while the number of years for the loan to be paid out has a smaller negative impact on that probability.en
dc.embargo.expire2024-01-25 20:12:15
dc.embargo.ruleOpen access
dc.format.extent92p.
dc.identifierhttp://www.pyxida.aueb.gr/index.php?op=view_object&object_id=10988
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/1240
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectΜηχανική μάθησηel
dc.subjectΠρόβλεψηel
dc.subjectΔυαδική ταξινόμησηel
dc.subjectΑποδοχή δανείωνel
dc.subjectMachine learningen
dc.subjectPredictionen
dc.subjectBinary classsificationen
dc.subjectLoan approvalen
dc.titleMachine learning application on loan approval predictionen
dc.title.alternativeΕφαρμογή μηχανικής μάθησης για την πρόβλεψη αποδοχής δανείωνel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Tzimas_2024.pdf
Μέγεθος:
2.14 MB
Μορφότυπο:
Adobe Portable Document Format