Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Breast cancer classification via statistical learning techniques, with applications to the Wisconsin diagnostic data set

Μικρογραφία εικόνας

Ημερομηνία

09/28/2021

Συγγραφείς

Pardali, Sofia
Παρδάλη, Σοφία

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Επιβλέπων

Διαθέσιμο από

2021-09-28 20:06:57

Περίληψη

Breast cancer is one of the most reported types of cancer around the world and the third leading cause of death among women. The high mortality rate due to breast cancer can be best tackled via early detection so that prevention can be done in a timely and efficient manner. Several statistical-based approaches have been developed to support medical decision makers in early breast cancer detection. Various techniques may provide different desired accuracies and it is therefore vital to use the method which provides the best results. This thesis is concerned with a comparative analysis of a number of statistical learning methods, namely Random Forests, KNN algorithm, Logistic Regression and Lasso Regression. These techniques are applied to the Wisconsin breast cancer classification problem. All the above algorithms were implemented in the R programming language.

Περιγραφή

Λέξεις-κλειδιά

Breast cancer, Classification algorithms, R programming language

Παραπομπή

Άδεια Creative Commons