Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Data analysis in a "dark store" environment

dc.contributor.opponentZachariadis, Emmanouilen
dc.contributor.opponentFraidaki, Katerinaen
dc.contributor.thesisadvisorPoulymenakou, Angelikien
dc.creatorKatsis, Iliasen
dc.date.accessioned2025-03-26T20:03:15Z
dc.date.available2025-03-26T20:03:15Z
dc.date.issued02/02/2022
dc.date.submitted2022-02-08 23:52:07
dc.description.abstractThe scope of this thesis is to analyze multidimensional data from a dark store called PockeeMart and derive deep business insights in order to achieve a complete data-driven strategy. The main objective of the dissertation concerns the application of machine learning to the data with purpose to elicit association rules, segment the customers based on their shopping behavior and create a predictive scenario, which classifies the order’s placement recency of the customers. PockeeMart is active in the FMCG sector, which is very demanding and competitive. The number of issues, that need to be taken into consideration and the number of tasks that must executed, makes it really challenging. During the pandemic period dark stores became more popular, as they do not require physical presence being part of online retailing and offer various other benefits for the users.en
dc.embargo.expire2022-02-08 23:52:07
dc.embargo.ruleOpen access
dc.format.extent55p.
dc.identifierhttp://www.pyxida.aueb.gr/index.php?op=view_object&object_id=9142
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/10629
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectFMCGen
dc.subjectDark storeen
dc.subjectAssociation rulesen
dc.subjectCustomer segmentationen
dc.subjectClassificationen
dc.titleData analysis in a "dark store" environmenten
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Katsis_2022.pdf
Μέγεθος:
1.77 MB
Μορφότυπο:
Adobe Portable Document Format