Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Fraud detection & assessment of the M-score and F-score models' ability to detect financial statement fraud

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Accounting and Financeen
dc.contributor.opponentDoukakis, Leonidasen
dc.contributor.opponentSiougle, Georgiaen
dc.contributor.thesisadvisorBallas, Apostolosen
dc.creatorGoulandris, Nikolaosen
dc.creatorΓουλανδρής, Νικόλαοςel
dc.date.accessioned2025-03-26T20:08:54Z
dc.date.available2025-03-26T20:08:54Z
dc.date.issued30-01-2023
dc.date.submitted2023-02-11 14:07:16
dc.description.abstractThe topic of this dissertation is financial fraud detection models (Fraudulent financial reporting - FFR). More particularly traditional models like M-Score and F-Score are presented along with the Spathis (2002) model which estimates the probability of FFR. The main objective of this dissertation was the assessment of these models and which model performs better in making correct classifications. Using a sample of 136 Greek listed firms (26 FFR and 100 non-FFR) for the period 2020-2021 results showed that for FFR firms, both M-Score and F-Score failed in working properly, while F-Score adjusted with Spathis (2002) model worked completely perfect. For non-FFR firms, M-Score and F-Score models worked almost perfect, while F-Score adjusted with Spathis (2002) worked fairly good enough even little worse than traditional models. It is concluded that traditional models should incorporate updated information about the market and the period they refer in order to improve detection of FFR firms, as the wrong classification of an FFR firm as a non-FFS has long-term and more serious consequences.el
dc.description.abstractΤο θέμα της παρούσας διπλωματικής εργασίας είναι τα μοντέλα εντοπισμού λογιστικής απάτης (Fraudulent Financial Reporting - FFR). Πιο συγκεκριμένα, τα παραδοσιακά μοντέλα, όπως το M-Score και το F-Score, παρουσιάζονται μαζί με το μοντέλο του Σπαθή (2002) που εκτιμά την πιθανότητα FFR. Ο κύριος στόχος αυτής της διπλωματικής εργασίας ήταν να αξιολογηθούν αυτά τα μοντέλα και να διερευνηθεί ποιο μοντέλο αποδίδει καλύτερα στη σωστή ταξινόμηση. Χρησιμοποιώντας ένα δείγμα 136 ελληνικών εισηγμένων εταιρειών (26 FFR και 110 non-FFR) για την περίοδο 2020-2021 τα αποτελέσματα έδειξαν ότι για τις εταιρείες FFR, τόσο το M-Score όσο και το F-Score απέτυχαν να λειτουργήσουν σωστά, ενώ το προσαρμοσμένο F-Score του Σπαθή (2002) λειτούργησε εντελώς τέλεια. Για εταιρείες που δεν διέπραξαν λογιστική απάτη - FFR, τα μοντέλα M-Score και F-Score λειτούργησαν σχεδόν τέλεια, ενώ το προσαρμοσμένο F-Score του Σπαθή (2002) λειτούργησε μέτρια προς καλά, λίγο χειρότερα από τα παραδοσιακά μοντέλα. Συμπεραίνεται ότι τα παραδοσιακά μοντέλα θα πρέπει να ενσωματώνουν ενημερωμένες πληροφορίες για την αγορά και την περίοδο που αναφέρονται προκειμένου να βελτιωθεί ο εντοπισμός των εταιρειών FFR, καθώς η εσφαλμένη ταξινόμηση μιας εταιρείας FFR ως μη FFR έχει μακροπρόθεσμες και πιο σοβαρές συνέπειες.en
dc.embargo.expire2023-02-11 14:07:16
dc.embargo.ruleOpen access
dc.format.extent58p.
dc.identifierhttp://www.pyxida.aueb.gr/index.php?op=view_object&object_id=10040
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/11533
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectΑπάτηel
dc.subjectΛογιστικές καταστάσειςel
dc.subjectΑριθμοδείκτεςel
dc.subjectFrauden
dc.subjectFinancial statementsen
dc.subjectM-scoreen
dc.subjectF-scoreen
dc.subjectFraud detectionen
dc.titleFraud detection & assessment of the M-score and F-score models' ability to detect financial statement frauden
dc.title.alternativeΕντοπισμός απάτης: αξιολόγηση της ικανότητας των μοντέλων M-Score και F-Score να εντοπίζουν απάτη στις λογιστικές καταστάσειςel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Goulandris_2023.pdf
Μέγεθος:
1.14 MB
Μορφότυπο:
Adobe Portable Document Format