Λογότυπο αποθετηρίου
 

On nonparametric and neural networks techniques for regression

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Economicsen
dc.contributor.thesisadvisorKyriazidou, Ekaterinien
dc.creatorKaroukis, Dimitriosen
dc.date2017-01-31*
dc.date.accessioned2017-01-31*
dc.date.available2025-03-26T19:41:54Z
dc.date.original31-01-2017*
dc.description.abstractThe context of this Thesis lies in the field of Econometrics. Our objective is to analyze various Nonparametric and Neural Networks techniques for regression. The first chapter of the Thesis is preoccupied with the analysis of the kernel density estimator, which is a fundamental step towards using kernel functions in regression. The second chapter is preoccupied with regression analysis by means of local polynomials. We will explore the techniques, their properties and their limitations. The third chapter is preoccupied with neural networks analysis. Specifically we present the structure of a one-hidden-layer and a two-hidden-layer feed forward neural network and explore their applications in regression. In the appendix we provide proofs for all the results that need to be validated throughout the thesis, namely, asymptotic (un)biasedness, consistency and asymptotic normality of the proposed estimators and the universal approximation theorem for neural networks in both the unit cube and the n-dimensional real space. We have used the R programming language for our analysis. We provide the algorithms in the appendix.en
dc.format.extent106p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/7042
dc.identifier.urihttps://doi.org/10.26219/heal.aueb.9223
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEconometricsen
dc.subjectKernel Density Estimationen
dc.subjectNon-parametric Regressionen
dc.subjectNeural Networks (NN)en
dc.subjectR programming languageen
dc.titleOn nonparametric and neural networks techniques for regressionen
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Karoukis_2017.pdf
Μέγεθος:
7.95 MB
Μορφότυπο:
Adobe Portable Document Format