Λογότυπο αποθετηρίου
 

Prediction of S&P 500 index movement using data mining techniques

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Economicsen
dc.contributor.opponentTzavalis, Eliasen
dc.contributor.opponentArvanitis, Stylianosen
dc.contributor.thesisadvisorKyriazidou, Ekaterinien
dc.creatorMichailidoy, Myrto-Christinaen
dc.date28-02-2018
dc.date.accessioned2025-03-26T19:50:31Z
dc.date.available2025-03-26T19:50:31Z
dc.description.abstractPredicting financial time series has proven extremely challenging due to their characteristics. There has been a vast number of researches investigating the predictability of financial variables from different aspects and by using different approaches. This study attempts to predict the direction of movement of S&P500 using models based on classification techniques; namely Logit, Linear Discriminant Analysis, Quadratic Discriminant Analysis, k-Nearest Neighbors, Support Vector Machines and Random Forest. The models developed are efficient, in the sense that any undetermined parameter is tuned using the Cross Validation technique. As inputs of the models, eleven technical indicators have been used and the data set is splitted into two sub-samples, the train and the test set. The performance of each model is assessed based on some evaluation measures, from which the best model is selected.en
dc.format.extent72p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/8301
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectPredictionen
dc.subjectS&P 500en
dc.subjectVariance Inflation Factors (VIF)en
dc.subjectFinancial variablesen
dc.subjectLogiten
dc.subjectLinear Discriminant Analysisen
dc.subjectQuadratic Discriminant Analysisen
dc.subjectk-Nearest Neighborsen
dc.subjectSupport Vector Machines (SVM)en
dc.subjectRandom foresten
dc.titlePrediction of S&P 500 index movement using data mining techniquesen
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Michailidou_2018.pdf
Μέγεθος:
2.34 MB
Μορφότυπο:
Adobe Portable Document Format