Εντοπίστηκε ένα σφάλμα στη λειτουργία της ΠΥΞΙΔΑΣ όταν χρησιμοποιείται μέσω του προγράμματος περιήγησης Safari. Μέχρι να αποκατασταθεί το πρόβλημα, προτείνουμε τη χρήση εναλλακτικού browser όπως ο Chrome ή ο Firefox. A bug has been identified in the operation of the PYXIDA platform when accessed via the Safari browser. Until the problem is resolved, we recommend using an alternative browser such as Chrome or Firefox.
 

Clustering Washington D.C. bike share stations by using time series data

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Management Science and Technologyen
dc.contributor.thesisadvisorKarlis, Dimitriosen
dc.creatorSarac, Burcinen
dc.date.accessioned2025-03-26T19:59:46Z
dc.date.available2025-03-26T19:59:46Z
dc.date.issued08/31/2020
dc.date.submitted2021-04-28 11:42:18
dc.description.abstractIn this economic era, technological developments lead on changing consumption habits. This mutation in consumption created sharing economy, which has consistently been getting a bigger role in economy day by day. Bike sharing systems, as one of the pioneers of sharing economy, are now counted as type of transportation in most of the big cities. Thus there are various studies works on improving efficiency of these systems. This thesis aims to cluster Washington D.C. bike-share stations and by identifying stations with similar rental behaviours, it is aimed to impact on efficiency of management of these stations. The dataset includes one-year rental records of shared bikes with their date time information as large time series data. Before clustering bike stations, first part of the thesis describes various clustering methods. Clustering is unsupervised learning method, to organize set of observations by their similarity and classify them. Calculating similarity between observations depends on selected clustering approach. This thesis covers iteration steps and evaluation of several clustering approaches, like k-means, k-medoids, hierarchical clustering, model based clustering, DBSCAN. After exploration of common algorithms, in the second part, to cluster bike-share stations, k-means, agglomerative hierarchical clustering and model based clustering methods implemented and evaluated.en
dc.description.abstractΑυτή η διατριβή στοχεύει να συγκεντρώσει σταθμούς κοινοποίησης ποδηλάτων στην Ουάσιγκτον και προσδιορίζοντας σταθμούς με παρόμοιες συμπεριφορές ενοικίασης, έχει ως στόχο να επηρεάσει την αποτελεσματικότητα της διαχείρισης αυτών των σταθμών.el
dc.embargo.expire2021-04-28 11:42:18
dc.embargo.ruleOpen access
dc.format.extent78p.
dc.identifierhttp://www.pyxida.aueb.gr/index.php?op=view_object&object_id=8593
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/10083
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectClustering methodsen
dc.subjectCapital bikeshareen
dc.subjectClusteringen
dc.subjectK-means algorithmen
dc.subjectExpectation-maximization algorithmen
dc.titleClustering Washington D.C. bike share stations by using time series dataen
dc.title.alternativeΣυγκέντρωση σταθμών κοινοποίησης ποδηλάτων Washington D.C. χρησιμοποιώντας δεδομένα χρονοσειρώνel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Sarac_2020.pdf
Μέγεθος:
4.44 MB
Μορφότυπο:
Adobe Portable Document Format