Repository logo
 

Value at risk in cryptocurrency: machine learning

Thumbnail Image

Date

2023-02-28

Authors

Μποζιώρη, Ιωάννα
Boziori, Ioanna

Journal Title

Journal ISSN

Volume Title

Publisher

Available from

2023-03-21 14:07:16

Abstract

Η έρευνα υπογραμμίζει τη βασική πρωτοτυπία της προτεινόμενης αρχιτεκτονικής, η οποία διασφαλίζει την αξιοπιστία των προβλέψεων μοντέλων βαθιάς μάθησης ανεξάρτητα από τα δεδομένα χρονοσειρών που χρησιμοποιούνται.Οι περισσότερες προσεγγίσεις πρόβλεψης χρονοσειρών στην επιστημονική βιβλιογραφία χρησιμοποιούν αλγόριθμους μηχανικής μάθησης και βαθιάς μάθησης για να ξεπεράσουν τα υπάρχοντα ή προτεινόμενα σημεία αναφοράς.Ως αποτέλεσμα της παγκοσμιοποίησης, της οικονομικής ολοκλήρωσης και της έλευσης των ηλεκτρονικών νομισμάτων, το παγκόσμιο χρηματοπιστωτικό σύστημα διέρχεται μια περίοδο μετασχηματισμού σε ένα άνευ προηγουμένου επίπεδο ανάπτυξης.
The research underlines the major originality of the proposed architecture, which ensures the reliability of deep learning model predictions regardless of the time series data utilised.The majority of time series prediction approaches in the scientific literature employ machine learning and deep learning algorithms to surpass existing or suggested benchmarks. As a result of globalization, economic integration, and the advent of electronic currencies, the global financial system is undergoing a period of transformation to an unprecedented level of development.

Description

Keywords

Κρυπτονομίσματα, Μηχανική μάθηση, Αξία σε κίνδυνο, Cryptocurrency, Machine learning (ML), Value at Risk (VaR)

Citation

Creative Commons license